
UNIVERSITE PARIS-SUD

ÉCOLE DOCTORALE INFORMATIQUE DE PARIS-SUD (ED 427)

Laboratoire de Recherche en Informatique (LRI)

DISCIPLINE INFORMATIQUE

THÈSE DE DOCTORAT

presentée en vue d’obtention du titre de docteur

par Asterios KATSIFODIMOS

Scalable View-based Techniques for Web Data :
Algorithms and Systems

Directeur de thèse : Ioana Manolescu Inria Saclay and Université de Paris-Sud

Composition du jury :

Rapporteurs : Yanlei Diao University of Massachusetts Amherst,
U.S.A.

Philippe Rigaux Conservatoire National des Arts et Mé-
tiers

Examinateurs : Alain Denise Université de Paris-Sud
Patrick Valduriez Inria Sophia Antipolis
Vasilis Vassalos Athens University of Economics and Bu-

siness

i

Résumé

“Techniques efficaces basées sur des vues matérialisées pour
la gestion des données du Web: algorithmes et systèmes”

Asterios Katsifodimos

Le langage XML, proposé par le W3C, est aujourd’hui utilisé comme un modèle
de données pour le stockage et l’interrogation de grands volumes de données dans
les systèmes de bases de données. En dépit d’importants travaux de recherche
et le développement de systèmes efficace, le traitement de grands volumes de
données XML pose encore des problèmes des performance dus à la complex-
ité et hétérogénéité des données ainsi qu’à la complexité des langages courants
d’interrogation XML.

Les vues matérialisées sont employées depuis des décennies dans les bases de
données afin de raccourcir les temps de traitement des requêtes. Elles peuvent être
considérées les résultats de requêtes pré-calculées, que l’on réutilise afin d’éviter
de recalculer (complètement ou partiellement) une nouvelle requête. Les vues
matérialisées ont fait l’objet de nombreuses recherches, en particulier dans le con-
texte des entrepôts des données relationnelles.

Cette thèse étudie l’applicabilité de techniques de vues matérialisées pour opti-
miser les performances des systèmes de gestion de données Web, et en particulier
XML, dans des environnements distribués. Dans cette thèse, nos apportons trois
contributions.

D’abord, nous considérons le problème de la sélection des meilleures vues à
matérialiser dans un espace de stockage donné, afin d’améliorer la performance
d’une charge de travail des requêtes. Nous sommes les premiers à considérer un
sous-langage de XQuery enrichi avec la possibilité de sélectionner des nœuds mul-
tiples et à de multiples niveaux de granularités. La difficulté dans ce contexte
vient de la puissance expressive et des caractéristiques du langage des requêtes et
des vues, et de la taille de l’espace de recherche de vues que l’on pourrait matéri-
aliser. Alors que le problème général a une complexité prohibitive, nous proposons
et étudions un algorithme heuristique et démontrer ses performances supérieures
par rapport à l’état de l’art.

Deuxièmement, nous considérons la gestion de grands corpus XML dans des
réseaux pair à pair, basées sur des tables de hachage distribuées. Nous consid-
érons la plateforme ViP2P dans laquelle des vues XML distribuées sont matérial-
isées à partir des données publiées dans le réseau, puis exploitées pour répondre
efficacement aux requêtes émises par un pair du réseau. Nous y avons apporté
d’importantes optimisations orientées sur le passage à l’échelle, et nous avons car-
actérisé la performance du système par une série d’expériences déployées dans
un réseau à grande échelle. Ces expériences dépassent de plusieurs ordres de
grandeur les systèmes similaires en termes de volumes de données et de débit de
dissémination des données. Cette étude est à ce jour la plus complète concernant

ii

une plateforme de gestion de contenus XML déployée entièrement et testée à une
échelle réelle.

Enfin, nous présentons une nouvelle approche de dissémination de données
dans un système d’abonnements, en présence de contraintes sur les ressources
CPU et réseau disponibles; cette approche est mise en oeuvre dans le cadre de
notre plateforme Delta. Le passage à l’échelle est obtenu en déchargeant le four-
nisseur de données de l’effort de répondre à une partie des abonnements. Pour
cela, nous tirons profit de techniques de réécriture de requêtes à l’aide de vues
afin de diffuser les données de ces abonnements, à partir d’autres abonnements.
Notre contribution principale est un nouvel algorithme qui organise les vues dans
un réseau de dissémination d’information multi-niveaux ; ce réseau est calculé à
l’aide d’outils techniques de programmation linéaire afin de passer à l’échelle pour
de grands nombres de vues, respecter les contraintes de capacité du système, et
minimiser les délais de propagation des information. L’efficacité et la performance
de notre algorithme est confirmée par notre évaluation expérimentale, qui inclut
l’étude d’un déploiement réel dans un réseau WAN.

Mots Clefs: XML, données du web, vues matérialisées, optimisation des requêtes,
selection des vues, systèmes d’abonnements, gestion des données.

iii

Abstract

“Scalable View-based Techniques for Web Data:
Algorithms and Systems”

Asterios Katsifodimos

XML was recommended by W3C in 1998 as a markup language to be used
by device- and system-independent methods of representing information. XML is
nowadays used as a data model for storing and querying large volumes of data in
database systems. In spite of significant research and systems development, many
performance problems are raised by processing very large amounts of XML data.

Materialized views have long been used in databases to speed up queries. Ma-
terialized views can be seen as precomputed query results that can be re-used to
evaluate (part of) another query, and have been a topic of intensive research, in
particular in the context of relational data warehousing.

This thesis investigates the applicability of materialized views techniques to op-
timize the performance of Web data management tools, in particular in distributed
settings, considering XML data and queries. We make three contributions.

We first consider the problem of choosing the best views to materialize within a
given space budget in order to improve the performance of a query workload. Our
work is the first to address the view selection problem for a rich subset of XQuery.
The challenges we face stem from the expressive power and features of both the
query and view languages and from the size of the search space of candidate
views to materialize. While the general problem has prohibitive complexity, we
propose and study a heuristic algorithm and demonstrate its superior performance
compared to the state of the art.

Second, we consider the management of large XML corpora in peer-to-peer
networks, based on distributed hash tables (or DHTs, in short). We consider a
platform leveraging distributed materialized XML views, defined by arbitrary XML
queries, filled in with data published anywhere in the network, and exploited to
efficiently answer queries issued by any network peer. This thesis has contributed
important scalability oriented optimizations, as well as a comprehensive set of ex-
periments deployed in a country-wide WAN. These experiments outgrow by orders
of magnitude similar competitor systems in terms of data volumes and data dis-
semination throughput. Thus, they are the most advanced in understanding the
performance behavior of DHT-based XML content management in real settings.

Finally, we present a novel approach for scalable content-based publish/sub-
scribe (pub/sub, in short) in the presence of constraints on the available compu-
tational resources of data publishers. We achieve scalability by off-loading sub-
scriptions from the publisher, and leveraging view-based query rewriting to feed
these subscriptions from the data accumulated in others. Our main contribution
is a novel algorithm for organizing subscriptions in a multi-level dissemination
network in order to serve large numbers of subscriptions, respect capacity con-

iv

straints, and minimize latency. The efficiency and effectiveness of our algorithm
are confirmed through extensive experiments and a large deployment in a WAN.

Keywords: XML, Web data, materialized views, query optimization, view selec-
tion, publish/subscribe, data management.

v

Acknowledgments

I offer my sincerest gratitude to my advisor, Ioana Manolescu, who has helped me
throughout my thesis with her trust, experience, knowledge and patience (lots of
it). Ioana has been more than an advisor for the last 4 years. She has been a
supportive friend, a great discussion partner and a caring mentor. She has never
refused to help me, even if this required her working inside a hammam! Ioana has
stayed up with me until the last minute of each and every one of our deadlines. She
showed me that work should be done the hard way and that there are no shortcuts
to get around it. This thesis would not be possible without her insistence, help and
guidance.

I would like to thank Yanlei Diao and Philippe Rigaux that have thoroughly
read my thesis and provided great feedback. Also my thesis committee, Alain
Denise, Patrick Valduriez and Vasilis Vassalos for doing me the honor of being
present in my defense. Vasilis has also given me great guidance and help in the
second year of my thesis, with his fruitful comments and discussions. Finally,
I would like to thank Cédric Bentz for his suggestions in Linear Programming
modeling and Yannis Manoussakis for his guidance on the NP-Hardness of one of
our problems.

I am also very grateful to my previous advisor Prof. Marios Dikaiakos from
my home university, the University of Cyprus. He is the one that first got me into
research, encouraged me to start a PhD and inspired me as much as possible. In
addition, I would like to thank Prof. George Pallis. He was the one to guide me in
my very first steps in research and the one to forward to me that DBWorld email
with which Ioana was announcing a PhD scholarship in her team.

I was very lucky to be surrounded by a cheerful group of colleagues. The Oak
team (formerly Gemo and Leo) has always been a pool of great people. Danai
Symeonidou, Julien Leblay, Stamatis Zampetakis, Katerina Tzompanaki, Alexan-
dra Roatis and Andrés Aranda Andújar have been a great companion in our every-
day life in the lab. I am grateful to Spyros Zoupanos and Alin Tilea for their work
on the ViP2P platform - almost all parts of this thesis are based on it.

I need lots of space to thank Konstantinos Karanasos, a true friend, travel
buddy, fellow dining philosopher and work colleague; I will try to keep it short. In
our long, late night discussions, we have covered every aspect of human existence.
From Konstantinos I learned two very important things about science and life: that
a convincing example does not count as a proof and that sometimes aubergines
have their place in a velouté (but they still badly affect its texture). Apart from a
friend, Konstantinos has also given me lots of advise during my thesis, he listened
to me patiently and put my thoughts in order. The last part of this thesis started
from one of his ideas, and finished with his invaluable help.

I would also like to thank Jesús Camacho-Rodríguez. Our time together (either
in front of a beer pitcher or in the lab) included lots of fun, interesting discussions.
Our legendary road trips with him and Konstantinos were long, really long, but
so much fun to do! His quality as a person and his hard working attitude really

vi

inspire me. I hope he reads this paragraph as he still owes me a (whole) pata
negra jamon.

I owe a lot of my passion for photography to Yannis Katsis, a very good friend
and gastronomical buddy. My first two years in Paris would never be the same
without him. I wish we could meet in the same city in the future for another walk
and some dinners.

Federico Ulliana has always stimulated the most interesting of discussions,
whether this involved people, science or politics. After work pints could never
be more interesting. I would also like to thank him for explaining some obscure
complexity numbers to me.

I had lots of fun and great culinary nights with Penny Karanasou, Zoi Kaoudi
and Despoina Trivela. We happened to get closer in the last year of my PhD and
they gave me a lot of support and careless moments. I will miss them a lot!

Isabelle van Sloten has a very big merit on this thesis. Always believing in me,
she has been my source of strength, confidence and energy. She never accepted
my excuses for procrastinating and she always insisted that I sleep early and get
up early the next day and work (I’m still struggling to follow her advice). Writing
a thesis is a long, lonely journey; having Isabelle with me made it a pleasant walk.

Finally I thank my friends Asterios, Miltos, Pavlos and Giannis; we spent lots of
time discussing and (loudly) arguing about every little thing on earth. They have
always set the bar high and showed me that no difficulty is a reason to fail.

I dedicate this thesis to my parents. I owe a lot to my father, the oldest of
my best friends. He defined the way I see the world today. Fixing my motorbike
together with him triggered my passion for experimentation and systems engi-
neering. My mother gave me trust, love, care and strong principles. She never
complained when it took me long to call her. Finally I would like to thank my
grandfather for showing me the simple side of life and for being positive about
everything. It is an honor to have him in my thesis defense, after a long trip from
Greece, in his late 80s.

Contents

Abstract i

Acknowledgments v

1 Introduction 1
1.1 Context: Web Data Management 1
1.2 Motivation . 2
1.3 Thesis Outline . 2

2 XML Databases, Views and Rewritings 5
2.1 The XML Data Model . 5

2.1.1 Data Model . 6
2.1.2 Standard XML Query Languages 6
2.1.3 XML Data Management Systems 7
2.1.4 XML Query Dialect and Tree Pattern Formalism 8

2.1.4.1 XQuery Dialect . 8
2.1.4.2 Joined Tree Patterns 10

2.2 XML Materialized Views . 11
2.2.1 Materialized Views Concepts and Core Problems 12
2.2.2 XML View-based Rewriting and Logical Algebraic Plans . . . 13
2.2.3 XML View-Based Rewriting Algorithm 14

2.3 Rewriting Cost Estimation and Optimization 15
2.3.1 View Size Estimation . 15
2.3.2 Algebraic Plan Cost Estimation 20
2.3.3 Plan Optimization . 21

2.4 Summary . 24

3 Materialized View Selection for XQuery 25
3.1 Motivation and Outline . 25
3.2 Problem Statement . 27
3.3 Candidate View Sets . 27

3.3.1 Candidate Views for a Workload 28
3.3.1.1 Candidate Views for a Tree Pattern Query 28
3.3.1.2 Candidate Views for a Query with Value Joins . . . 29

3.3.2 Pruning Candidate Views 30

vii

viii CONTENTS

3.3.3 Sets of Candidate Views . 32
3.4 View Selection Algorithms . 33

3.4.1 Exhaustive Search . 33
3.4.2 Knapsack-style View Selection 34
3.4.3 State Search-based View Selection 35

3.4.3.1 State Transformations 35
3.4.3.2 Reduce-Optimize Algorithm (ROA) 38

3.5 Closest Competitor Algorithms . 41
3.6 Experimental Evaluation . 42

3.6.1 Framework . 43
3.6.2 Inputs: Data, Queries and Space Budget 43
3.6.3 Algorithms and Settings . 44
3.6.4 Candidate View Set Size . 45
3.6.5 View Selection Algorithm Effectiveness 45
3.6.6 View Selection Algorithm Efficiency 47
3.6.7 Experiment Conclusion . 48

3.7 Related work . 48
3.8 Summary . 49

4 Distributed View-based Data Dissemination 51
4.1 Motivation and Outline . 52
4.2 State of the Art . 54

4.2.1 P2P Data Sharing Networks 54
4.2.2 XML Data Management Based on DHTs 56
4.2.3 Managing XML on a DHT: Platforms vs. Simulations 58
4.2.4 Previous Publications on ViP2P 58

4.3 ViP2P Platform Overview . 59
4.3.1 ViP2P by Example . 59

4.3.1.1 View Publication 59
4.3.1.2 Document Publication 60
4.3.1.3 Ad-hoc Query Answering 61

4.3.2 ViP2P Peer Architecture . 61
4.3.2.1 External Subsystems 62
4.3.2.2 Document Management Module 63
4.3.2.3 View Management Module 64
4.3.2.4 Query Management Module 65

4.4 ViP2P View Management . 66
4.4.1 View Definition Indexing and Lookup for View Materialization 66
4.4.2 View Definition Indexing and Lookup for Query Rewriting . 67

4.4.2.1 Label Indexing (LI) 67
4.4.2.2 Return Label Indexing (RLI) 68
4.4.2.3 Leaf Path Indexing (LPI) 68
4.4.2.4 Return Path Indexing (RPI) 69

4.5 Experimental Results . 69

CONTENTS ix

4.5.1 Experimentation Settings 70
4.5.2 View Materialization Micro-benchmarks 72
4.5.3 View Materialization in Large Networks 74
4.5.4 View Indexing and Retrieval Evaluation 79
4.5.5 Query Engine Evaluation . 80
4.5.6 Conclusion of the Experiments 82

4.6 Summary . 83

5 Delta: Scalable View-based Publish/Subscribe 85
5.1 Motivation and Outline . 85
5.2 Problem Model . 88

5.2.1 Rewritability Graph (RG) 89
5.2.2 Characteristics of a Configuration 91
5.2.3 Problem Statement . 93

5.3 Configuration Selection . 93
5.3.1 Rewritability Graph Generation 94
5.3.2 Configuration Selection Overview 95
5.3.3 CFG Utilization Optimization Through ILP 98
5.3.4 CFG Latency Optimization 101
5.3.5 Incremental CFG Computation 101

5.4 View-based Rewriting . 102
5.4.1 Views and Rewritings . 103
5.4.2 Embedding Graph (EG) . 104
5.4.3 View-based Rewriting Algorithm 105
5.4.4 Generality of our Approach 107

5.5 Experimental Evaluation . 108
5.5.1 Experimental Setup . 108
5.5.2 EG and RG Generation . 109
5.5.3 CFG Utilization Optimization Through ILP 109
5.5.4 Greedy CFG Latency Optimization 111
5.5.5 Experiments in a WAN Deployment 113
5.5.6 Experiment Conclusion . 116

5.6 Related Works . 116
5.7 Future Work . 117
5.8 Summary . 118

6 Conclusion and Future Work 119
6.1 Thesis Summary . 119
6.2 Perspectives . 120

Bibliography 122

List of Algorithms

1 Tree Pattern Cardinality Estimation 18

2 Reduce-Optimize Algorithm (ROA) 39
3 Procedure REWRITEANDTRIM . 40

4 Partial RG Generation . 94
5 Latency Optimization Greedy Algorithm (LOGA) 102
6 Trie-based EG Construction Algorithm 106
7 Cover-based greedy rewriting (CGR) 106

xi

Chapter 1

Introduction

The Web is increasingly acknowledged as the single richest and most diverse
source of data, whether unstructured, that is, organized in Web pages, or struc-
tured, with rigid (tabular) or heterogeneous (tree-like) structure. Web data is
not only searched, but also parsed to extract phrase structure, queried to search
for precise answers, mined for knowledge, and processed at large scale by har-
nessing large-scale parallel processing platforms [AMR+12]. Vast amounts of data
is produced every day such as governmental data 1, maps 2 and global economy
reports 3 to name a few. Storing, organizing, and sustaining long-term infrastruc-
tures as well as building systems for significant amounts of data are very challeng-
ing tasks. Thus, the urgency for new tools and systems that will enable scalable
distributed data management, has never been bigger.

1.1 Context: Web Data Management

In the last decade XML has established itself as standard data model for the
exchange of data and organizations increasingly employ XML within their infor-
mation systems. XML is becoming more than a document markup language or a
data exchange format: applications are built with XML as their core data model
taking advantage of XML’s flexibility to describe schema-less, semistructured data.
Following this trend, commercial database systems, traditionally supporting the
relational model, now broadly support XML (e.g., IBM DB2 [BCH+06], Microsoft
SQL Server [PCS+04], Oracle [LM09], etc.).

These systems and many other software tools developed for working with XML
(content management systems, Web services, etc.) have made vast improvements
in terms of performance and scalability since the early days of XML. However,
as the data volumes keep increasing and the complexity of the data and queries
follows similar trends, performance-oriented optimizations are still in great need.

1. http://www.data.gov, http://www.data.gouv.fr
2. http://planet.openstreetmap.org
3. http://datacatalog.worldbank.org

1

http://www.data.gov
http://www.data.gouv.fr
http://planet.openstreetmap.org
http://datacatalog.worldbank.org

2 CHAPTER 1. INTRODUCTION

The interest in XML processing tools and primitives is also due to their appli-
cability to other document-oriented, semistructured data formats, such as JSON
(Javascript Object Notation) [JSO].

1.2 Motivation

Materialized views have long been used in database systems in order to expe-
dite database queries [Hal01]. Materialized views can be seen as precomputed
query results that can be re-used to evaluate (part of) another query, and have
been a topic of broad research in the database community, in particular in the
context of relational data warehousing [GM99a]. In this thesis, we investigate
the applicability of techniques based on materialized views to optimize the perfor-
mance of Web data management systems. More specifically, we consider XML data
and queries in distributed settings.

In the context of XML data management, distributed systems are of significant
interest for two reasons. First, as organizations interact more and more, sharing
and consuming one another’s information, it is often the case that (XML) data
is produced independently by several distributed sources. Second, a distributed
system can accommodate data volumes going far beyond the capacity of a single
machine or cluster.

The work presented in this thesis aims to show that materialized views over
XML data can be successfully used, in particular within distributed systems, to
enable efficient sharing and querying of large volumes of Web data.

1.3 Thesis Outline

Aiming at the efficient view-based Web data management, this thesis considers
two main problems: the view selection problem for XML query workloads and the
distributed view-based XML data management. Below we provide an overview of
the organization of this thesis.

Chapter 2 provides the necessary background to follow the rest of the thesis, in-
cluding notably XML data management and problems related to view-based data
management. As we will see in the chapters that follow, this thesis depends
on view-based query rewriting, view size estimations, algebraic rewriting plans
and a cost-based optimizer. To this end, we use an existing rewriting algorithm
[MKVZ11, Kar12] while we have implemented our own view size estimations and
a simple cost-based optimizer. All these details can be found in Chapter 2.

Chapter 3 considers the problem of choosing the best views to materialize within
a given space budget in order to improve the performance of a query workload.
The contributions of this chapter are the following:

— The work presented in this chapter has been the first to formalize and ad-
dress the view selection problem for queries and views expressed in a rich

1.3. THESIS OUTLINE 3

subset of XQuery, namely tree patterns with value joins.
— We analyze the space of potential candidate views and present several ef-

fective candidate pruning criteria.
— While the general problem has prohibitive complexity, we propose and

study a heuristic algorithm and experimentally demonstrate its superiority
compared to the state of the art.

The work described in this chapter has been published in [KMV12], while an
earlier version had been briefly outlined in [CRKMR10].

Chapter 4 explores the case of distributed XML materialized views and presents
ViP2P (standing for Views in Peer-to-Peer), a distributed platform for sharing XML
documents based on a structured P2P network infrastructure (DHT). At the core of
ViP2P stand distributed materialized XML views, defined by arbitrary XML queries,
filled in with data published anywhere in the network, and exploited to efficiently
answer queries issued by any network peer. Views in ViP2P can be proposed au-
tomatically (by the algorithm of Chapter 3) or manually, by the peers themselves.
The contributions of Chapter 4 can be summarized as follows:

— We present a complete architecture for query evaluation, both in continuous
(subscription) and in snapshot mode. This architecture enables the efficient
dissemination of answers to tree pattern queries (expressed in an XQuery
dialect) to peers that are interested in them, regardless of the relative order
in time between the data and the subscription publication.

— We have fully implemented our architecture, on top of the FreePastry [Fre]
P2P infrastructure and present a comprehensive set of experiments per-
formed in a WAN, demonstrating ViP2P’s superiority over the state of the
art.

— The ViP2P platform scales to several hundreds of peers and hundreds of
GBs of XML data, both unattained in previous works.

This chapter is an extension of the work published in [KKMZ12] and closely
follows a technical report [KKMZ11].

Chapter 5 presents Delta, a novel approach for scalable content-based publish/
subscribe in the presence of constraints on the available computational resources
of the data publisher. Unlike ViP2P (Chapter 4) where views/subscriptions are
filled directly by the publishers of documents, in Delta scalability is achieved by off-
loading some subscriptions from the publisher, and leveraging view-based query
rewriting to feed these subscriptions from the data accumulated in others. Our
main contributions are:

— We are the first that consider the design and implementation of a publish/
subscribe platform that is based on materialized views.

— We present a novel algorithm for organizing views in a multi-level dissem-
ination network, exploiting view-based rewriting and powerful integer lin-
ear programming capabilities to scale to many views, respect capacity con-
straints, and minimize latency.

— We provide a full implementation of our architecture and we present exten-

4 CHAPTER 1. INTRODUCTION

sive experiments validating the efficiency and effectiveness of our algorithm
that are confirmed through experiments and a large deployment in a WAN.

The results of this chapter are part of an article submitted for publication on
May 1st, 2013 and which is currently being reviewed.

Chapter 6 provides a summary of the thesis and discusses directions for future
work.

Focused comparisons to the state of the art To facilitate the reading of this
thesis, descriptions of pointed areas of related work are delegated to the chap-
ters to which they most naturally relate. Thus, Chapter 3 presents the state of
the art concerning materialized view selection. Chapter 4 discusses P2P manage-
ment platforms and finally, Chapter 5 provides more details on publish/subscribe
systems.

Other Scientific Activity During the Thesis In parallel with the works described
in this thesis, we have continued and finalized a collaboration that started prior to
this PhD thesis with Prof. Marios Dikaiakos and Prof. George Pallis from University
of Cyprus (2009-2011). The work focused on Minersoft, a fully functional search
engine for software resources installed in infrastructures like computing Grids and
Clouds. Minersoft visits remote infrastructures, crawls their file systems, indexes
content and allows keyword-based queries to its users. The results of this work
have been published in [PKD10, DKP12].

Finally, we have collaborated with Dr. Jean-Daniel Fekete from Inria Saclay, and
Prof. Cécile Germain-Renaud from Université Paris-Sud (2009-2012). We have
implemented LogDice, a data visualization tool based on GraphDice [BCD+10].
LogDice aims to achieves interactive, visual exploration of the spatio-temporal
structure of data access and data sharing in e-Science social networks. We
have performed log file analysis, developed social network graph aggregation
algorithms and designed a relational database schema for social network graph
queries. Early results of this work have been presented in [KFCGR10].

Chapter 2

XML Databases, Views and
Rewritings

XML [W3C08] was recommended by W3C in 1998 as a markup language to
be used by device- and system-independent methods of representing information.
Since then, it has gone far beyond the original intentions of W3C and is nowadays
used as a data model for data exchange supporting various applications. XML
databases have been a popular subject of research by the database community.

Materialized views, one of the oldest topics in database research, have been
proposed as a means to expedite processing of XML queries over XML databases.
Various research issues arose when materialized views met XML databases. Two
of the most important of them are: the problem of storing and retrieving XML
materialized views and the problem of optimizing XML queries using views.

In this chapter, we first discuss the XML data model (Section 2.1). We then
move to presenting the main problems that are related to materialized views as
well as the current state of the art in answering XML queries using views (Sec-
tion 2.2). Finally, in Section 2.3, we show how one can estimate the cost of query
plans that are evaluated over materialized views and how those plans can be opti-
mized for lower evaluation costs.

2.1 The XML Data Model

XML is the de facto standard for the representation of structured information
on the Web. It stands for eXtensible Markup Language and is a semistructured data
model that was designed to be generic, platform-independent and self-descriptive
and serves as a uniform data exchange format between applications in the WWW.

In this section, we first overview the XML data model (Section 2.1.1) and
present the standard XML query languages (Section 2.1.2). Then, we discuss ex-
isting approaches for storing and retrieving XML data (Section 2.1.3) and finally,
we present the query language that is studied in this thesis (Section 2.1.4).

5

6 CHAPTER 2. XML DATABASES, VIEWS AND REWRITINGS

2.1.1 Data Model

XML is organized in documents. In each XML document there is exactly one
root and each node (other than the root) has exactly one parent. Each node in an
XML tree has a label and can have multiple children. Each XML node can be an
element, a text node or an attribute. Each child of an element node may contain a
list of (sub-)elements, text nodes and/or attributes. Note that attribute nodes do
not have children. Moreover, the order in which the children of a node appear in
an XML document matters.

XML Structuring and Typing An XML document is well-formed if it respects cer-
tain syntactic rules. However, those rules do not define anything specific about
the structure of the document (e.g., what children nodes an element is allowed to
have). For reasons of compatibility (e.g., two applications that try to communi-
cate and should agree on a common vocabulary), it is necessary to define all the
element and attribute names that may be used as well as what values an attribute
may take, which elements can (or must) occur within other elements, etc.

There are two ways of defining the structure and enforcing the typing of XML
documents: the Document Type Definition (DTD) [W3C04] an older and more re-
stricted way, and XML Schema [XML], which offers extended possibilities, mainly
for the definition of data types and value constraints. An XML document is valid
against a schema, if it respects the constraints that are specified in the given
schema.

2.1.2 Standard XML Query Languages

Since the appearance of the XML data model, various XML query languages
have been proposed for navigating and querying XML documents. XPath [W3C07a]
and XQuery [W3C07b], both specified by the W3C, are the two most widely used
and studied XML query languages. Currently, both languages rely on a common
data model, namely the XML Query Data Model (XDM) [W3C07c]. What is more,
XPath is a fragment of XQuery. A brief description of the two languages is provided
below.

XPath is a domain specific language (DSL) and is used for extracting bits of an
XML document using path expressions. XPath is popular for its simplicity and
conciseness. It uses several axes in its path expressions, in order to facilitate the
navigation in XML documents (e.g., child, descendant, ancestor and sibling axes).
The current version (XPath 2.0) extended the data model of the previous version,
adding features such as intersection and complementation operators, as well as
iteration capabilities. [BK08, tCM07] provide formal results (complexity, relation
to first-order logic etc.) of the XPath versions 1.0 and 2.0.

XQuery syntactically contains XPath as part of its syntax. XQuery was designed
for use with XML documents, however, it is functional and allows the use of user
defined functions (UDFs). It is thus a Turing-complete language and can be con-

2.1. THE XML DATA MODEL 7

sidered a general-purpose language. XQuery overcomes many of the limitations
of XPath at the expense of introducing complexity: its rich semantics significantly
increase the complexity of query evaluation and optimization. XQuery provides a
feature called FLWOR expressions. The FLWOR acronym stands for for, let, where,
order by and return. All FLWOR expressions start with a for or a let expression and
end with a return expression. FLOWR expressions enable XQuery to:

— perform iterations (for)
— define variables (let)
— order results (order by)
— impose constraints and perform joins (where) and finally
— construct custom formatted data (return).

The expressiveness and complexity for various fragments of XQuery is studied in
[BK09a].

2.1.3 XML Data Management Systems

An intuitive way of querying XML data is based on the idea that the entire XML
document is loaded into main memory in the form of a tree and then XML queries
are evaluated over this tree. Although such a main-memory implementation may
seem straightforward, it is feasible for querying only small XML documents, and
is inefficient for querying large XML data repositories.

Motivated by this, in the recent years, significant effort has focused in the de-
velopment of high-performance XML database systems, that either use existing
relational database systems (RDBMS, in short) or they implement “native” algo-
rithms and systems specifically designed for XML and tree structured data.

RDBMS-based Approaches Many works have focused on employing RDBMS for
the storage of XML documents. These works proposed techniques to map the
semistructured data of XML documents to relational tables and then translate XML
queries into relational ones and hand the optimization of such queries to the un-
derlying relational query optimizer.

For instance, in [FK99], the key idea was to construct a table that stores the
two end points (source, target) of each edge in the XML tree along with the type
(element or attribute) and the value of the source node. Query evaluation for “/”
queries was done by simple joins on the edge endpoints.

At the same time, [STZ+99], used knowledge from DTDs in order to perform
the mapping of XML to tables, whereas in [DFS99] the mapping was done given
information on the expected data and queries. Several other approaches were also
proposed later, e.g., [FM00, BGvK+06].

Commercial RDBMS also provide support for XML, such as IBM DB2 [BCH+06],
Microsoft SQL Server [PCS+04] and Oracle [LM09]. Moreover, SQL/XML was
proposed in 2003 is an extension to the SQL specification, which defines the use
of XML in conjunction with SQL. The XML data type was introduced, as well as
several routines, functions, and XML-to-SQL data type mappings to support ma-
nipulation and storage of XML in a SQL database.

8 CHAPTER 2. XML DATABASES, VIEWS AND REWRITINGS

Native XML Approaches Along with relational approaches, native XML systems
have also been developed, such as the Lore [IHW01] and the Tukwila [MW99]
systems. Nowadays, eXist [eXi], BaseX [BSX] and Saxon [Sax] are three of the
most widely used open source XML databases.

To overcome the limitations of early RDBMS-based approaches, novel ID
schemes that capture information about the position of each node in the XML
document (such as the start and end point of the node, its depth in the tree,
etc.) were proposed [TVB+02, LLCC05]. Such IDs can be used to speed up
query evaluation for “//” queries (e.g., efficiently determine whether a node is
the parent/ancestor of another) and have been used by XML-specific join algo-
rithms [ZND+01, AKJP+02, BKS02].

More specifically, a variation of the traditional merge join algorithm was first
proposed in [ZND+01]. It was then improved by the tree-merge and stack-tree
structural join algorithms [AKJP+02]. The improvement was based on the idea
that the XML data can be stored in inverted lists for each tag in the XML document.
Each inverted list stores the positions (Start, End, Level) in the form of structural
IDs, of all elements with the same tag name, sorted by the element’s start position.
That way, the structural join can be performed through a single pass over its inputs.

Both [ZND+01, AKJP+02] need to apply a structural join for each edge (rela-
tionship between tags) of the XML query. To solve this problem and further opti-
mize query evaluation, the holistic twig join algorithm [BKS02] builds the result
of a query in a single pass over all the input relationships in parallel, eliminating
the need for storing and sorting intermediate results.

2.1.4 XML Query Dialect and Tree Pattern Formalism

The query language, the rewriting algorithm and the algebraic plans consid-
ered in this thesis, have been extensively studied in a paper [MKVZ11] as well as in
a recent thesis [Kar12]. We recall these fundamental notions here, as background
and to make this thesis self-contained. The algorithms described in subsequent
chapters build the contributions of this thesis upon these notions.

In this section, we first describe the XQuery dialect we consider throughout
this thesis in Section 2.1.4.1 and then, in Section 2.1.4.2 we present a joined tree
pattern formalism, conveniently representing queries.

2.1.4.1 XQuery Dialect

Let L be a set of XML node names, and XP be the XPath{/,//,[]} language
[MS04]. In this thesis, we consider views and queries expressed in the XQuery
dialect described in Figure 2.1. In the for clause, absV ar corresponds to an abso-
lute variable declaration, which binds a variable named xi to a path expression
p ∈ XP to be evaluated starting from the root of some document available at the
URI uri. The non-terminal relV ar allows binding a variable named xi to a path
expression p ∈ XP to be evaluated starting from the bindings of a previously-

2.1. THE XML DATA MODEL 9

1 q := for absV ar (, (absV ar|relV ar))*
(where pred (and pred)*)? return ret

2 absV ar := xi in doc(uri) p
3 relV ar := xi in xj p // xj introduced before

xi
4 pred := string(xi) = (string(xj) | c)
5 ret := 〈l〉 elem* 〈/l〉
6 elem := 〈li〉{ (xk | id(xk) | string(xk)) }〈/li〉

Figure 2.1: Grammar for views and queries.

introduced variable xj. The optional where clause is a conjunction over a number
of predicates, each of which compares the string value of a variable xi, either with
the string value of another variable xj, or with a constant c.

The return clause builds, for each tuple of bindings of the for variables, a new
element labeled l, having some children labeled li (l, li ∈ L). Within each such
child, we allow one out of three possible information items related to the current
binding of a variable xk, declared in the for clause:

— xk denotes the full subtree rooted at the binding of xk;
— string(xk) is the string value of the binding;
— id(xk) denotes the ID of the node to which xk is bound.

There are important differences between the subtree rooted at an element (or,
equivalently, its content), its string value and its ID. The content of xi includes all
(element, attribute, or text) descendants of xi, whereas the string value is only a
concatenation of n’s text descendants [w3c07d].

Therefore, string(xi) is very likely smaller than xi’s content, but it holds less
information. Second, an XML ID does not encapsulate the content of the corre-
sponding node. However, XML IDs enable joins which may stitch together tree
patterns into larger ones.

We assume structural IDs, the most prominent of which are proposed in
[TVB+02, LLCC05]. In a nutshell, structural IDs serve for comparing the IDs of
two XML nodes and determining whether one is a parent (or ancestor) of the
other. Our XQuery dialect distinguishes structural IDs, value and contents, and
allows any subset of the three to be returned for any of the variables, resulting in
significant flexibility.

For illustration, Figure 2.2 shows a query q in our XQuery dialect, as well
as two views v1 and v2. The parent custom function returns true if and only if
its inputs are node IDs, such that the first identifies the parent of the second.
Moreover, as usual in XQuery, the variable bindings that appear in the where clauses
imply the string values of these bindings (e.g. $e=‘ACM’ is implicitly converted to
string($e)=‘ACM’).

10 CHAPTER 2. XML DATABASES, VIEWS AND REWRITINGS

for $p in doc("confs")//confs//SIGMOD/paper, $y1 in $p/year,
$a in $p//author[email], $c1 in $a/affiliation//country,

q $b in doc("books")//book, $y2 in $b/year, $e in $b/editor,
$t in $b//title, $c2 in $b//country

where $e=‘ACM’ and $y1=$y2 and $c1=$c2
return 〈res〉 〈tval〉{string($t)}〈/tval〉 〈/res〉

v1 for $p in doc("confs")//confs//paper, $a in $p/affiliation
return 〈v1〉 〈pid〉{id($p)}〈/pid〉 〈aid〉{id($a)}〈/aid〉

〈acont〉{$a}〈/acont〉 〈/v1〉
for $b in doc("books")//book, $c in $b//country, $e in $b/editor,

$t in $b/title, $y1 in $b/year, $p in doc("confs")//SIGMOD/paper,
v2 $y2 in $p/year, $a in $p//author[email]

where $e=‘ACM’ and $y1=$y2
return 〈v2〉 〈cval〉{string($c)}〈/cval〉 〈tval〉{string($t)}〈/tval〉

〈pid〉{id($p)}〈/pid〉 〈aid〉{id($a)}〈/aid〉 〈/v2〉
for $v1 in doc("v1.xml")//v1, $p1 in $v1/pid, $af1 in $v1/aid,

$c1 in $v1//acont//country, $v2 in doc("v2.xml")//v2,
r $c2 in $v2/cval, $t2 in $v2/tval, $p2 in $v2/pid, $a2 in $v2/aid

where $p1=$p2 and parent($a2,$af1) and $c1=$c2
return 〈res〉 〈tval〉{$v2}〈/tval〉 〈/res〉

Figure 2.2: XQuery query, views, and rewriting.

2.1.4.2 Joined Tree Patterns

We use a dialect of joined tree patterns to represent views and queries. For-
mally, a tree pattern is a tree whose nodes carry labels from L and may be an-
notated with zero or more among: ID, val and cont (corresponding to the ID,
string value and full subtree seen in the previous section). A pattern node may
also be annotated with a value equality predicate of the form [= c] where c is
some constant. The pattern edges are either simple for parent-child or double for
ancestor-descendant relationships.

A joined tree pattern is a set of tree patterns, connected through value joins,
which are denoted by dashed edges. For illustration, Figure 2.3 depicts the
(joined) tree pattern representations of the query and views shown in XQuery
syntax in Figure 2.2. In short, the semantics of an annotated tree pattern against a
database is a list of tuples storing the ID, val and cont from the tuples of database
nodes in which the tree pattern embeds. The tuple order follows the order of the
embedding target nodes in the database. The detailed semantics feature some
duplicate elimination and projection operators (from the algebra we will detail
next), in order to be as close to the W3C’s XPath 2.0 semantics as possible. The
only remaining difference is that tree patterns return tuples, whereas standard
XPath/XQuery semantics uses node lists. Algebraic operators for translating be-
tween the two are by now well understood [MPV09]. The semantics of a joined
tree pattern is the join of the semantics of its component tree patterns.

2.2. XML MATERIALIZED VIEWS 11

v1

confs

paperID

affiliationID,cont

v2

book

countryval
editor

[val=ACM] titleval

year

SIGMOD

paperID

year authorID

email

q

confs

SIGMOD

paper

year author

affiliationemail

country

book

year

editor
[val=ACM]

titleval
countryval

algebraic plan for rewriting q using v1 and v2

πtitle.val,country.val

σcountry.val=country.val

σauthor.ID≺affiliation.ID

./
paper.ID

nav

v1

affiliation//countryval

v2

Figure 2.3: Pattern query and views, and algebraic rewriting.

Translating from the XQuery dialect presented earlier to the joined tree pat-
terns is quite straightforward. The only part of the XQuery syntax not reflected in
the joined tree patterns is the names of the elements created by the return clause.
However, these names are not needed when rewriting queries based on views.
Once a rewriting has been found, the query execution engine creates new ele-
ments out of the returned tuples of XML elements, values and/or identifiers, using
the names specified by the original query, as explained in [SSB+00]. From now
on, for readability, we will only use the joined tree pattern query representations
of views and queries.

2.2 XML Materialized Views

A materialized view is a query defined over a database whose results (called
the view extent) are computed and stored in the database. A materialized view
is, thus, like a cached copy of the data that can be accessed quickly. Indexes can
be built on materialized views, making query evaluation over materialized views
typically faster than accessing the base data. This has made materialized views a
prevalent tool for query optimization. However, whether the use of materialized
views will result in a better or worse query evaluation time, depends on the query
and the statistical properties of the database. It is up to the query optimizer to
decide whether the evaluation will be done over materialized views or over the
base data.

12 CHAPTER 2. XML DATABASES, VIEWS AND REWRITINGS

In order to be able to answer a query using a set of views, one has to rewrite
the query into an equivalent rewriting expression. Rewriting expressions, or plans,
typically imply an algebraic formalism describing their computations and can be
further optimized to achieve lower evaluation costs. Optimizers typically require
a cost model, able to quantify the resources needed for the execution of plans.

In what follows, we outline the basic notions and methods of using material-
ized views in Section 2.2.1. We then move to XML specific methods of answering
XML queries using views. In Section 2.2.2 we present an algebraic formalism
that describes the rewriting plans that we use in this thesis, and then we present
the view-based query rewriting algorithm that we use. Finally, in Section 2.3 we
present our cost estimation techniques and our algebraic plan optimizer.

2.2.1 Materialized Views Concepts and Core Problems

Materialized views have long been used in data warehousing as a means of
data replication and abstraction. Data from multiple databases are merged into
one global schema comprising materialized views. Such data replication has two
main advantages:

1. data moves away from the online transactional database, making online ana-
lytical processing (OLAP) more performant over lock-free materialized views

2. data moves closer to the users (or applications) that use them.

Answering Queries Using Views Given a query q and a set of views V , answer-
ing queries using views (AQUV, in short) deals with the problem of how can q be
answered using the views in V .

Answering queries using views has been extensively studied in the relational
context [CKPS95, DPT99, GL01, DGL00]. A survey on answering queries using
views is given in [Hal01]. This thesis depends on an algorithm for answering XML
queries using views that is presented in the next section (Section 2.2.2).

The View Selection Problem Given a query workload Q, view selection is the
problem of choosing a view set V to be materialized in order to answer the queries
in a workload Q. Depending on the context, the view set V is selected, such
that the query evaluation time (using the selected views), the view storage space
and/or the view maintenance cost is minimized.

View selection has been extensively studied, especially in the context of data
warehouses for SPJ queries [TS97] and OLAP queries [Gup97, HRU96, GM05].
Several formal results concerning the view selection problems are provided
in [CHS02]. More recently the view selection problem was addressed in the con-
text of RDF warehouses [GKLM10, GKLM12].

View selection has been addressed in the past for XPath [MS05, TYT+09]. This
thesis extends the state of the art and addresses the problem of view selection for
an XQuery dialect (Chapter 3).

2.2. XML MATERIALIZED VIEWS 13

2.2.2 XML View-based Rewriting and Logical Algebraic Plans

A rewriting is an XQuery query expressed in the same dialect as our views
and queries, but formulated against XML documents corresponding to material-
ized views. For instance, the rewriting XQuery expression r in Figure 2.2 is an
equivalent rewriting of the query q using the views v1 and v2 in the same Figure.

Logical Algebraic Plans An alternative, more convenient way to view rewritings
is under the form of logical algebraic plans, or simply plans. Before presenting our
plans, we introduce some useful logical operators. We denote by ≺ the parent
comparison operator, which returns true if its left-hand argument is the ID of the
parent of the node whose ID is the right-hand argument. Similarly, ≺≺ is the
ancestor comparison operator. Observe that ≺ and ≺≺ are only abstract operators
here (we do not make any assumption on how they are evaluated, neither what
kind of structural IDs are used).

We consider an algebra on tuple collections (as described in Section 2.1.4.1)
whose main operators are:

1. Scan of all tuples from a view v, denoted scan(v) (or simply v for brevity,
whenever possible);

2. Cartesian Product, denoted ×;

3. Selection, denoted σpred, where pred is a conjunction of predicates of the
form a� c or a� b, a and b are tuple attributes, c is some constant, and � is
a binary operator among {=,≺,≺≺};

4. Projection, denoted πcols, where cols is the attributes list that will be pro-
jected;

5. Navigation, denoted nava,np. nav is a unary algebraic operator, parameter-
ized by one of its input columns’ name a, and a tree pattern np. The name
a must correspond to a cont attribute in the input of nav. Let t be a tuple in
the input of nav, and np(t.a) be the result of evaluating the pattern np on the
XML fragment stored in t.a. Then, nava,np outputs the tuples {t on

a
np(t.a)}.

Figure 2.4 illustrates the functioning of nav on a sample input operator op. The
parameters to this nav are bookcont (the name of the column containing 〈book〉 ele-
ments), and the tree pattern //authorcont. The first tuple output by nav is obtained
by augmenting the corresponding input tuple with a authorcont attribute contain-
ing the single author-labeled child of the element found in its bookcont attribute.
The second and third nav output tuples are similarly obtained from the last tuple
produced by op. Observe that the second tuple in op’s output has been eliminated
by the nav since it had no 〈author〉 element in its bookcont attribute.

The algebra also includes the join operator, defined as usual, sort and duplicate
elimination. For illustration, in the bottom right of Figure 2.3, we depict the
algebraic representation of the rewriting r as it was shown earlier in XQuery syntax
at the bottom of Figure 2.2.

14 CHAPTER 2. XML DATABASES, VIEWS AND REWRITINGS

op navbookcont, //authorcont(op)

bookID bookcont

bookID,1 〈book〉
〈author〉author1〈/author〉
〈/book〉

bookID,2 〈book/〉
bookID,3 〈book〉

〈author〉author2〈/author〉
〈author〉author3〈/author〉
〈/book〉

⇒

bookID bookcont authorcont

bookID,1 〈book〉 〈author〉author1〈/author〉
〈author〉author1〈/author〉
〈/book〉

bookID,3 〈book〉 〈author〉author2〈/author〉
〈author〉author2〈/author〉
〈author〉author3〈/author〉
〈/book〉

bookID,3 〈book〉 〈author〉author3〈/author〉
〈author〉author2〈/author〉
〈author〉author3〈/author〉
〈/book〉

Figure 2.4: Sample input and output to a logical nav operator.

2.2.3 XML View-Based Rewriting Algorithm

The rewriting algorithm we build upon [MKVZ11, Kar12] is computationally
expensive: it extends the simpler XPath 1.0 case when the views as well as the
query have a single return node, for which the problem is coNP-hard [CDO08].
As we will show in Chapter 3, frequent calls to the rewriting algorithm are very
expensive and should be avoided. Finally, the rewriting algorithm we build upon
generates complete and minimal rewritings.

Definition 2.2.1 (Complete Rewriting). A rewriting r of a query q is called complete
when r can be processed completely based on materialized views, i.e. without access
to the base data.

Alternatively, one could also consider partial rewritings, i.e., evaluate part of
the query based on the views and part of the query using the base documents. In a
partial rewritings setting, one would need to join the results from the views, with
those directly extracted from the document, to obtain the query answer. For our
tree pattern query language, any decomposition of a query in, say, two sub-queries
amounts to some split of the corresponding tree pattern. Joining the partial results
requires the base data store to use the same class of node identifiers as the views,
which may not always be possible.

What is more, if one traverses the base data tree to match part of the query,
it is often as or more efficient to match the whole query tree pattern during this
traversal, as to retrieve just partial query results and to further join with a view.
While we consider that focusing on complete rewritings only does not generally
lead to loss of performance, a more thorough investigation of partial rewritings is
the topic of future work.

Definition 2.2.2 (Minimal Rewriting). A rewriting r of a query q based on a set of
views V is minimal if no other rewriting of q uses a proper subset of V .

In other words, one cannot obtain an equivalent rewriting of q using only a
strict subset of the view occurrences appearing in r. For instance, the rewriting r in

2.3. REWRITING COST ESTIMATION AND OPTIMIZATION 15

bibliography

paper

year

2003

authors

author

name

Serge
Abiteboul

title

AXML
Project

book

authors

author

name

Jennifer
Widom

author

name

Jeffrey
Ullman

author

name

Hector
Garcia
Molina

title

DB Systems:
The Complete

Book

book

year

1995

authors

author

name

Serge
Abiteboul

title

Found. of
Databases

Figure 2.5: Sample XML Document.

Figure 2.2, of the form σ(v1 ./paper.ID v2) is minimal. In contrast, a rewriting r′ of
the form π(σ(v1 ./paper.ID v1 ./paper.ID v2)), using the v1 view twice, in a self-join on
paper.ID, is not minimal. Considering only minimal rewriting allows keeping view
storage space and rewriting evaluation costs low. Indeed, with our assumptions
on costε, a non-minimal rewriting is likely to incur a higher evaluation cost than
the non-minimal one – if only for scanning the extra view occurrences.

2.3 Rewriting Cost Estimation and Optimization

In this section we present methods for estimating the cost of rewriting plans
and then optimizing them for expediting query evaluation over materialized views.
More specifically, in Section 2.3.1 we show how we estimate materialized view
sizes, while in Section 2.3.2 we show details about our cost estimations. Finally,
in Section 2.3.3 we show how algebraic plans can be optimized for low cost exe-
cution.

2.3.1 View Size Estimation

Query optimizers and database tuning algorithms decide on the most efficient
plan and database design, based on estimations of the size of query results. Sim-
ilarly, on our view selection algorithms Chapter 3, knowing the size of the views
that are candidates for materialization is very important. The size of a given view
is characterized by two metrics:

1. the view’s cardinality (number of tuples), and

2. its space occupancy (in bytes).

16 CHAPTER 2. XML DATABASES, VIEWS AND REWRITINGS

[1:1]
bibliography[1]

[1:1]
paper [1]

[1:1]
year [1]

[1:1]
authors [1]

[1:1]
author [1]

[1:1]
name [1]

[1:1]
title [1]

[2:2]
book[2]

[0:1]
year [0.5]

[1:1]
authors [1]

[1:3]
author [2]

[1:1]
name [1]

[1:1]
title [1]

Figure 2.6: XSum summary for the document of Figure 2.5.

Both the cardinality and the space occupancy of a materialized view depend
on the view itself but also on the database (of documents) over which the view is
defined. Size estimations for graph and document databases have been proposed
in the past, the most important of which being [PGI04, QLO03, GW97]. The
general idea behind these works is simple: for each document, one can build a
document summary, a data structure that encapsulates a set of statistics about:

— the paths found in the document;
— statistics of values inside XML elements, value distribution histograms etc.
Such a summary of a document d, denoted by sum(d), can be used to estimate

the size of a view without having to actually materialize it.

View Cardinality Estimation To summarize graph structures, Dataguides [GW97]
were introduced in the context of semistructured OEM (Object Exchange Model)
graphs. An implementation of Dataguides had been previously developed within
our group [ABMP08], called XSum, and we enhanced it with a selectivity estima-
tion module used for our query processing purposes, which we describe below.
Figure 2.6 depicts a sample document summary extracted by XSum out of the
document depicted in Figure 2.5.
XSum summaries store (among others) the following:

— Average Number of Children For every path p/l where p is a path and l is
a label, XSum stores the average number of children labeled l found under
path p. In Figure 2.6, the average number of children is placed next to the
respective l node. For instance, Figure 2.6 we see that there is (in average)
one bibliography element in the document, 0.5 year elements under book
elements and 2 author elements under each /bibliography/book/authors.

— Edge Cardinalities For every path p/l where p is a path and l is a la-
bel, XSum stores the minimum and maximum number of children la-
beled l found under path p. In Figure 2.6, edge cardinalities are placed
over the respective l node. For instance, Figure 2.6 we see that there

2.3. REWRITING COST ESTIMATION AND OPTIMIZATION 17

is exactly one bibliography element in the document ([1:1]), 0 to 1 year
([0:1]) elements under book elements and 1 to 3 author elements under
/bibliography/book/authors ([1:3]).

— Value/Size Statistics For each distinct path, XSum summaries also store:
— the average subtree size (in bytes);
— the average text value size (in bytes) 1 and;
— the number of distinct text values.

Finally note that, for our estimations, we assume that values in a given XML
path are uniformly distributed, and that values of different paths are independently
distributed.

Tree Pattern Cardinality Estimation In order to estimate the cardinality of a tree
pattern view v, given a document d, we first use the XSum summary of d, denoted
by XSum(d) to find all the paths of d that match v. We then use those paths to
generate a set of unfolded tree patterns, where all //-edges are replaced by the
parent-child paths from the document summary, that match the // path.

For example, consider the view that stores all the authors of the bibliography
document depicted in Figure 2.5. The view is defined by the pattern //authorval.
Given the summary of Figure 2.6, unfolding the view //authorval, yields the fol-
lowing two unfolded tree patterns:

1. /bibliography/book/authors/authorval
2. /bibliography/paper/authors/authorval.

We now move to explaining how the unfolded tree patterns of a given pattern
p can be used to estimate the cardinality of p.

From the above example, it is easy to see that the sum of estimated cardinalities
of the unfolded tree patterns gives an estimation of the actual cardinality of the
original tree pattern.
For instance, consider the pattern:

/bibliography/book/authors/authorval.

There is in average 1 bibliography element in the document, and 2 book el-
ements under bibliography. Thus, the cardinality of the path /bibliography/book
would be 1∗2 = 2. Similarly, there is 1 authors element for each /bibliography/book.
Thus, the cardinality of /bibliography/book/authors would be 1 ∗ 2 ∗ 1 = 2. Finally
there are in average 2 author elements under each /bibliography/book/authors.
Thus, the total cardinality of the pattern p is estimated to be 1 ∗ 2 ∗ 1 ∗ 2 = 4.
Similarly, the estimated cardinality of /bibliography/paper/authors/authorval is 1.
Thus, the total cardinality of //authorval is estimated to be 4 + 1 = 5.

Definition 2.3.1 (Estimated Tree Pattern Cardinality). We define the estimated car-
dinality of a tree pattern p, as the sum of the estimated cardinalities of its unfolded
tree patterns.

1. The average subtree and text value size correspond to what the cont and val annotations
return respectively in our query language.

18 CHAPTER 2. XML DATABASES, VIEWS AND REWRITINGS

Algorithm 1: Tree Pattern Cardinality Estimation
Input : Tree Pattern pattern, XSum summary sum
Output: Estimated Cardinality of pattern

1 Algorithm TPCardinality(pattern, sum)
2 card← 1
3 foreach unfolded tree pattern p ∈ sum.unfold(pattern) do
4 card← card+ cardinality(p, p.root, sum)

5 return card

1 Procedure cardinality(tree pattern p, node n, XSum summary sum)
2 card← 1
3 foreach edge e ∈ outEdges(n) do
4 if ∃ node nr ∈ p descendant of n such that nr is return node then
5 card← card× sum.avgChildren(e.src, e.dst)
6 else
7 //this is an existential branch. card reduced by a constant C

card← card/C

8 if n annotated with equality predicate then
9 card← card× 1/sum.numOfDistinctTextV alues(n)

10 card← card× cardinality(p, e.dst, sum)

11 return dcarde

Algorithm 1 describes the cardinality estimation algorithm exemplified above.
First, the given tree pattern view is unfolded. The result of the unfolding is a set
of unfolded tree patterns. Then, for every unfolded tree pattern uP , the algorithm
estimates uP ’s cardinality with a call to the recursive cardinality procedure and
adds uP ’s cardinality to the total cardinality card.

The main functionality of our estimations is implemented by the cardinality
procedure of Algorithm 1. It goes as follows: given the root n of an unfolded
tree pattern, the cardinality procedure iterates through the outgoing edges of n.
Given an edge e 2, cardinality retrieves the average e.dst children of e.src from
the summary sum.

The algorithm then checks whether there exists a descendant of n, nr ∈ p, that
returns an ID, val or cont. If such an nr exists, the current cardinality is multiplied
by avg. If not, the cardinality will be reduced by a constant C as the branch of p,
rooted at n is existential; existential branches can only reduce the cardinality of a
view. Finally if n is annotated with an equality predicate, the cardinality will also
be reduced: card is multiplied by the inverse of the number of distinct values that
the summary stores for that path.

The final step (line 10) is to go further down in the unfolded tree pattern
and calculate the cardinality of the subtree of p, rooted at e.dst. Returning from
the recursion, the cardinality of the subtree will be multiplied with the current

2. The source of e, e.src is n itself and the destination of e, e.dst is one of the children of n.

2.3. REWRITING COST ESTIMATION AND OPTIMIZATION 19

cardinality card.

Joined Pattern Cardinality Estimation A joined tree pattern can be alternatively
expressed as a projection, over a selection over the cartesian product of all its tree
patterns [MKVZ11]. More specifically, the general form of a joined tree pattern jp
is: π(σpred(t1×t2×, . . . ,×tk)) where {ti}1≤i≤k are the tree patterns in jp and pred is
the predicate that applies all equality selections that enforce the value joins found
in jp.

The traditional approach to estimate the cardinality of equality selection (thus,
also equi-join) operators in relational databases is the one taken in System R
[SAC+79] where only 10% of the input tuples survive a selection 3. The same
heuristic is used by recent cardinality estimations [TGMS08] proposed for XQuery
joins.

We apply this heuristic also in our case. Given the joined pattern jp, shown
above, we estimate the cardinality its cardinality as follows:

1. we estimate the cardinality of each tree pattern in jp;

2. we calculate the product of tree pattern cardinalities (thus, calculating the
cardinality of t1 × t2 × . . . shown above) and finally;

3. we reduce the product of cardinalities by 10% for each of the value joins in
jp.

Note that, unlike tree patterns, joined tree patterns might join results coming
from multiple documents. Thus, in order to estimate the cardinality of a joined
tree pattern, one has to calculate the cardinality of all tree patterns of a joined
pattern over all the documents of the database.

Formally, based on the above, we estimate the cardinality for a joined pattern
jp, given a set of documents D as follows:

cardinality(jp,D) = 0.1joins(jp) ×
k∏
i=1

(
∑
∀d∈D

TPCardinality(ti, XSum(d))) (2.1)

where joins(jp) is the number of value joins in the joined tree pattern jp and
{ti}1≤i≤k are the tree patterns of jp.

View Space Occupancy Estimating the space occupancy of a joined pattern is
straightforward: given a joined pattern jp, we first find the average tuple size of
the tuples returned by jp and multiply it by the estimated cardinality of jp. The
final number is an estimation of the total space occupancy of jp.

For instance, consider a joined pattern jp that returns tuples consisting of two
columns: a cont column whose average size is 100 bytes and a val column whose
average size is 20 bytes. It is easy to see that the average tuple size of jp is 120
bytes. If the cardinality of jp is 200, the total estimated space occupancy of jp is
120*200=24.000 bytes.

3. Alternatively, one could change our estimations such that more recent heuristics are used;
for instance [RG00].

20 CHAPTER 2. XML DATABASES, VIEWS AND REWRITINGS

Average Tuple Size Recall that for a given a document d, the summary of d,
XSum(d), stores the average subtree size and average text value for all paths in
d. Given a tree pattern tp, and a return node nr ∈ tp one can match tp against
the summary XSum(d) and then retrieve the average size of nr over all matching
paths.

The average tuple size of a tree pattern tp given a document d, is given by the
sum of the average sizes of tp’s return nodes. We denote the average tuple size of
tp given a document d by avgTupleSize(tp, d).

Taking this one step further, one can calculate the average tuple size of a tree
pattern tp expressed over a set of documents D, simply by calculating the average
over all avgTupleSize(tp, d),∀d ∈ D. Formally:

avgTuple(tp,D) =

∑
∀d∈D

avgTupleSize(tp, d)

|D| (2.2)

Finally, the tuple signature (i.e., which columns and of which type (ID, val, cont)
the tuple contains) of a joined tree pattern jp is the concatenation of the the tuple
signatures of all tree patterns tp ∈ jp. Thus, in order to estimate the average tuple
size of a joined tree pattern, it is enough to calculate the average tuple size of its
contained tree patterns and then sum them.

2.3.2 Algebraic Plan Cost Estimation

There might be several rewritings for a query q using a set of views V ; for exam-
ple, consider the query q: /a/bcont/cval and the views v1: /aid and v2: //bid,cont/cval.
Query q can be rewritten by performing a structural join of views v1 and v2 on the
IDs of a and b and finally:

— projecting bcont and cval of v2 or;
— projecting bcont and navigating into bcont of v2 to extract and project cval.

Observe that these two rewritings use exactly the same views but their evalua-
tion costs may considerably differ. The evaluation costs depend on the data and
physical operators used during the rewriting plan execution.

Definition 2.3.2 (Evaluation cost of a rewriting plan). We define the evaluation
cost of a rewriting plan r as a function c : r → Rk where k is the number of distinct
resources that are involved in the evaluation of r, typically I/O, CPU etc.

Note that each result of c is a vector stating the consumption along each cost
dimension (I/O, CPU etc.).

Distributed Evaluation Costs We now turn to a distributed scenario where, with-
out loss of generality, each view is located in a different network site. In this
case, each network site can have different I/O, CPU, incoming/outgoing band-
width costs etc.

Let N be the set of network sites on which query evaluation can be distributed.
In our previous example, the data of v1 can be shipped to the network site holding

2.3. REWRITING COST ESTIMATION AND OPTIMIZATION 21

v2 and execute there the rest of the plan. Alternatively, the data can be shipped to
the network site holding v1 and evaluate the rest of the plan there. Observe that,
depending on where the plan is evaluated, the costs might differ.

Returning to the general case, let Pr be the set of all distributed physical plans
for a given rewriting plan r running on the sites N . In this case, the cost func-
tion c defined earlier, should output the cost along all cost dimensions (I/O, CPU,
incoming/outgoing bandwidth etc.) for each of the N sites on which r is running.

For this distributed scenario, the cost function c is defined as follows:

Definition 2.3.3 (Evaluation cost of a distributed rewriting plan). We define the
evaluation cost of a distributed rewriting plan r as a function c : Pr → R|N |×k,
assigning to each plan p ∈ Pr, the estimated costs, along different cost dimensions in
different network sites, entailed by the evaluation of p.

Observe that each result of c is now a matrix stating the consumption along each
cost dimension and at each site.

Comparing Costs To enable comparing costs, we rely on a single cost aggregator
which combines the utilization cost of all the different resource components of the
sites involved in the execution of a plan, and returns a single (real) number. The
aggregator may for instance sum up all the cost components, possibly assigning
them various weights depending on the metric and/or the site involved.

Definition 2.3.4 (Cost aggregator). The cost aggregator α, is defined as a function
α : R|N |×k → R, that combines the utilization costs of all different resource compo-
nents into a single real number.

In the sequel, for a given plan p ∈ Pr, we will simply write cost(p) to denote
the scalar aggregation α(c(p)) of p’s multidimensional costs.

Concerning cost, we make a few assumptions that are well-supported by the
existing XML processing literature. First, each physical operator has a positive
cost. Second, the cost of each physical operator (such as view scan, hash join,
holistic twig join etc.) is monotonous in the size of each of its inputs, that is: if
we fix all but one inputs to the operator and add tuples to the last input, the cost
of evaluating the operator increases. Summing this up over a fixed physical plan,
the more data is added in the views on which the plan is computed, the higher the
physical plan evaluation cost.

2.3.3 Plan Optimization

We assume available an algebraic cost-based optimizer that is pipelined at the
output of the query rewriting algorithm: for each distributed algebraic rewriting
plan r of a query q found by the rewriting algorithm, the optimizer applies logical
and physical plan transformations, looking for the most efficient way to evaluate r,
such that the cost(r) function returns the minimum physical evaluation cost among
all equivalent rewritings of q. Several XML cost-based optimization techniques
have been proposed in the past [CC10, PZIÖ06, WPJ03].

22 CHAPTER 2. XML DATABASES, VIEWS AND REWRITINGS

Logical Plan Physical Plan 1 Physical Plan 2 Physical Plan 3

π

σ

./

v1@s1 nav

v2@s2

π@s1

σ@s1

./ @s1

v1@s1 nav@s2

v2@s2

π@s2

σ@s2

./ @s2

v1@s1 nav@s2

v2@s2

π@s3

σ@s3

./ @s3

v1@s1 nav@s2

v2@s2

Figure 2.7: Logical plan and two physical operator placement configurations.

To build distributed physical plans out of logical plans formulated in the alge-
bra previously described, our optimizer first applies optimizations on the logical
level and then proceeds in the translation of the logical plan to a physical one.

Logical Plan Optimization At the logical level, all selections and projections are
simply pushed as low as possible in the logical algebraic plan. One could also per-
form join reordering in the logical level, though, our optimizer is not yet capable
of doing so. This is admittedly a limitation of our current optimizer implementa-
tion. The rest of the optimizations take place while transforming the logical plan
into a physical one.

Physical Plan Optimization The optimizer transforms a logical plan into a physical
plan through a recursive traversal, which generates plans from the bottom up. At
any given point, the optimizer has to make two decisions:

1. what physical operator will be used as an “implementation” of the logical
one, i.e. a logical join operator can be implemented by a Nested Loop or
Merge or Hash join etc. and;

2. where the operator is going to be placed, i.e. a binary join operator can be
placed on either of the two sites that feed it.

More specifically, the logical to physical transformation follows the principles of
[ML86] and goes as follows:

1. The first physical operators produced, are view scans. These are leaf physical
operators, each of which is placed at the site of the respective view.

2. Selections, projections and navigations are always translated into their cor-
responding physical operators and are placed at the same site as their imme-
diate child operators. In other words, a selection, projection or navigation
is evaluated at the site where its input data originate from, thus avoiding
unnecessary data transfers.

3. Now consider joins of plans, of the form o = o′ ./ o′′.
The first decision to make is the choice of the physical join algorithm which
must be used to implement the logical join ./:

2.3. REWRITING COST ESTIMATION AND OPTIMIZATION 23

— If the join condition is on a conjunction of equality predicates, an in-
memory hash join is used. In case the inputs or outputs of the join are
estimated to exceed the amount of main memory, an external join is used
instead.

— If the join condition is a single structural ID comparison (checking if some
node is a parent or ancestor of the other), the optimizer checks if the
inputs are properly ordered for this join, adds Sort operators on the in-
puts as needed, and then develops two physical join plans: one using the
StackTreeAncestor physical join operator [AKJP+02] and another one us-
ing the StackTreeDescendant operator.

— In all other cases, a Nested Loop physical join operator is used.
The second decision to make concerns the placement of the physical join(s)
thus obtained. The optimizer generates all possible combinations of:
— all the physical join algorithms selected to implement ./, as explained

above and;
— the site where the plan can run (i.e. the sites where o′ and o′′ are evalu-

ated).

The procedure above may generate a very large number of physical plans. To
avoid this very lengthy exploration, a budget k (number of allowed plans) is fixed
before the optimization starts and is not exceeded during optimization.

Figure 2.7 depicts a logical plan where the view v1 is stored at the network site
s1 and v2 is stored at s2. Suppose that the query is posed in network site s3. On
the right of the logical plan we depict three of its physical plan translations.

In the current implementation, the optimizer always places a navigation oper-
ator on the same site as the site of its child operator. This is based on the heuristic
that oftentimes navigation reduces the number of tuples, since some tuples may
lack matches for the navigation paths - and such tuples are pruned away by the
navigation operator. In practice, this heuristic has held in most of the cases we
experimented with, although it can obviously be contradicted by other examples.

On the other hand, the join operation can be evaluated in one of the two sites
s1, s2 that store the views (Physical Plan 1 and 2) or, on site s3 where the query is
posed (Physical Plan 3).

After the physical plans have been enumerated, it is up to the optimizer to es-
timate the cost of those plans and choose the one with the least cost. In summary,
our optimizer going from a logical plan to an executable physical plan, relies on a
set of heuristics, which aim at reducing data transfers between sites and picking
efficient join operators whenever possible.

24 CHAPTER 2. XML DATABASES, VIEWS AND REWRITINGS

2.4 Summary

In this chapter we presented XML, a popular data model for representing and
sharing data on the Web, along with the main approaches that have been pro-
posed by the scientific community for the efficient storage and retrieval of XML
data. Then we discussed the management of data based on materialized views
and how XML queries can be answered from views. We then showed how the cost
of rewriting plans can be estimated and how rewriting plans can be optimized for
lower evaluation costs.

Chapter 3

Materialized View Selection for
XQuery

In this chapter, we consider the setting of XML databases where data is stored
in XML files and query processing is done over materialized views defined over
the XML files. Based on a query workload and a given storage space budget, we
address the problem of selecting which set of materialized views to select in order
to minimize query evaluation costs. We start by identifying the family of views
that can be candidates for materialization and we propose techniques to reduce it.
We then devise two selection algorithms. The first is inspired by previous works
on the same problem that consider only simple, one-view query rewritings while
the second, is applicable to environments where multiple views can be used to
answer a query. The performance and efficiency of our algorithms is demonstrated
through a series of experiments that include algorithms from the state of the art.

The work presented in this chapter has led to a demonstration of a software pro-
totype [CRKMR10] and this chapter closely follows a published paper [KMV12].

3.1 Motivation and Outline

The efficient processing of XML queries raises many challenges, due to the
complex and heterogeneous XML structure, and on to the complexity of the W3C
XQuery language. XQuery is Turing-complete, thus many performance-enhancing
works focused on speeding up the processing of a central language subset, typi-
cally consisting of tree patterns. Performance enhancing techniques include effi-
cient tree pattern evaluation algorithms [BK09b, GKM09, KRML05], new physical
operators such as the Holistic twig join [BKS02] and its improved variants, query
simplification and minimization [AYCLS02], algebraic optimization etc. To speed
up XML data access, previous research has focused on building efficient stores,
exploiting XML node identifiers encapsulating useful structural information, as
well as building XML summaries and indices, with DataGuides [GW97] and D(K)
indices [QLO03] being among the best-known proposals.

25

26 CHAPTER 3. MATERIALIZED VIEW SELECTION FOR XQUERY

Materialized views have improved performance by orders of magnitude in re-
lational databases [ACN00, GM99b, HRU96], and they raised interest also in the
context of XML databases [AMR+98]. The problem of rewriting an XML query
using one view has been extensively studied e.g., in [MS05, XO05, YLH03], and
using several views, e.g., in [CDO08, CC10, MKVZ11, TYÖ+08]. A dual problem
to view-based rewriting is the automated selection of materialized views to im-
prove the performance of a given XQuery workload. Well-studied for relational
[ACN00, GM99b, MCB11] and RDF [GKLM12] databases, it has also attracted
attention for XML queries and views [EAZZ09, MS05, TYT+09, YLH03].

In this chapter, we consider the problem of selecting a set of views to be ma-
terialized in order to minimize the processing costs associated to a given query
workload Q. We consider queries and views expressed in a large subset of XQuery,
consisting of conjunctive tree patterns (using the child and descendant axis and
existential branches) that return data from several nodes and are connected with
value joins. Following [ABMP07, BOB+04, CDO08, MKVZ11, TYÖ+08], our views
(and queries) are also allowed to store XML node identifiers, which enable inter-
esting view joins and potentially more efficient rewritings.

We picked this language since it is among the most expressive for which
multiple-views equivalent query rewriting algorithms are known. Specifically,
we rely on the rewriting algorithm of [MKVZ11] which, given a set of views
V = {v1, v2, . . . , vn} materialized over a database D and a query q, returns the
equivalent rewritings of q using the views in V . Each such rewriting is complete, in
the sense that the database is no longer needed in order to evaluate the queries.
A rewriting is expressed in a tuple-based XML algebra, to be detailed further on.

Assuming that each query qi ∈ Q is associated a weight wi ≥ 0 (for instance,
reflecting the query frequency), the view selection problem we consider is: find
the set of materialized views Vbest such that the weighted sum of the costs for
processing all workload queries through rewritings based on Vbest views, is the
smallest that can be attained among any other view set.

In this chapter, we make the following contributions:
— We are the first to formalize the problem of materialized view selection for

the expressive tree pattern query with value joins dialect we consider. We
show that the space of potential candidate views makes complete explo-
ration unfeasible and present several effective candidate pruning criteria.

— We leverage an existing query rewriting algorithm [MKVZ11] to propose
two view selection algorithms: a benefit-oriented greedy algorithm named
UDG, reminiscent of previous algorithms [MS05, TYT+09], and a state
search-based algorithm named ROA, exploring many view set transforma-
tions and including a randomized component.

— We compare UDG and ROA with their closest competitors from the litera-
ture [MS05, TYT+09]. Our experiments show that ROA scales well beyond
the algorithms of [TYT+09] and our UDG. While ROA is slower than the
algorithm of [MS05], we show that it consistently recommends view sets
leading to lower processing costs. This is because ROA considers many-

3.2. PROBLEM STATEMENT 27

views rewritings, and exploits the full spectrum of rewriting possibilities
our query and view language enable.

The remainder of this chapter is organized as follows. Section 3.2 gives the
problem definition. Section 3.3 discusses candidate view sets. Section 3.4 presents
our view selection algorithms, while Section 3.5 details the closest competitors we
compare with. Section 3.6 describes our experiments. We discuss other related
works in Section 3.7 and then we conclude.

3.2 Problem Statement

A view set V brings cost savings to a given query workload Q since queries
don’t have to be evaluated from the base data. We define the benefit of evaluating
a given workload Q in the presence of a set of materialized views V as follows:

Definition 3.2.1 (Benefit of a view set). The benefit b of a view set V is the difference
between the cost of executing the queries of a workload Q over the base data, denoted
by cost(q|∅), and the cost of executing the same queries over the set of materialized
views V , denoted by cost(q|V). Formally:

b(V,Q) =
∑
q∈Q

(wi × (cost(q|∅)− cost(q|V)))

where wi is the weight of query qi in Q.

Adding or removing a view v to a given set of views V can increase or decrease
the benefit of V . In addition, for a given set of views V and two views v1, v2,
adding v1 alone or v2 alone to the existing view set V may not increase its cost
savings, if V ∪ {v1} and V ∪ {v2} do not enable any new interesting rewritings,
while adding v1 and v2 simultaneously to V would increase it. This is the case
when a more efficient rewriting can be found based on V ∪ {v1, v2}.
Our problem statement can be formalized as follows:

Definition 3.2.2 (Problem Definition). Given a space budget S, find the view set
Vbest such that size(Vbest) ≤ S and b(Vbest, Q) ≥ b(V,Q) for all view sets V fitting in
S.

Note that by setting S to be infinitely high, one can get a variant of our problem
where the goal of the optimization is to find the set of views Vbest with the largest
benefit b(V,Q) among all other view sets.

3.3 Candidate View Sets

In this section, we first explain which views can be considered candidates for
materialization (Section 3.3.1). Section 3.3.2 presents a set of techniques for
pruning candidate views and finally, Section 3.3.3 presents different candidate
view sets for our problem.

28 CHAPTER 3. MATERIALIZED VIEW SELECTION FOR XQUERY

3.3.1 Candidate Views for a Workload

Definition 3.3.1 (Candidate view). A view v is a candidate view for a query q iff
there exists an equivalent rewriting of q using v (and possibly other views).

We denote by CS0(q) the set all candidate views for the query q, and by CS0(Q)
the candidates for all queries in a workload Q. We start by considering candidates
for tree pattern queries.

3.3.1.1 Candidate Views for a Tree Pattern Query

It has been shown [MKVZ11, TYÖ+08] that a tree pattern view v may par-
ticipate in an equivalent rewriting of a tree pattern query q only if there exists a
tree embedding φ : v → q. This embedding must preserve node labels, i.e., for
any n ∈ v, label(n) = label(φ(n)). The embedding must also respect structural
relationships between nodes:

— for any node n ∈ v and m a /-child of n, φ(m) must be a /-child of φ(n);
— for any node n ∈ v and m a //-child of n, φ(m) must be a descendant of

φ(n).
Finally, φ must not contradict value predicates from the query, i.e.: for any

node n ∈ v, such that m = φ(n) ∈ q, if m is annotated with a predicate of the form
[val = c1] for some constant c1, then n must not be annotated with a predicate of
the form [val = c2] for some constant c2 6= c1.

We now turn to the task of enumerating CS0 candidates. We denote by non-
annotated tree patterns those patterns whose nodes carry an attribute or element
name, but no annotation of the form val, cont, ID, or [val = c]. One can enumer-
ate all candidate views for a workload Q by:

— enumerating all non-annotated tree patterns that can be embedded in some
query q ∈ Q and

— creating from each non-annotated tree pattern thus obtained, all possible
tree patterns that differ in their ID, val and cont annotations.

For example, consider the workload Q1 consisting of the single query q1:
/a/b/cval. Sample non-annotated tree patterns which can be embedded in q1
are: /a, //a, //b, //c, /a/b, /a//b, . . . , /a/b/c, //a/b/c etc. In turn, from the
non-annotated tree pattern /a, one can derive e.g., the annotated patterns /aID,
/aID,val, /aID,val,cont, /acont etc.

Estimating the Size of CS0(q) We denote the number of nodes of q by |q| and start
by counting the non-annotated tree patterns which can be extracted out of q. For a
given k < |q|, there are

(|q|
k

)
subsets of q nodes, and in the worst case, each subset

determines a sub-pattern of q, having k edges (counting also the edge above the
sub-pattern root, e.g., in Figure 2.3, the // edge above the confs node). Each such
edge could be annotated / or //. Thus, the number of non-annotated tree patterns
of k nodes that can be constructed from a query q is, in the worst case,

(|q|
k

)
× 2k.

We now consider building candidate views out of an non-annotated tree pat-
tern tul. Let n be a node of tul such that there is an embedding from φul : tul → q

3.3. CANDIDATE VIEW SETS 29

for some q in the workload. To obtain an annotated tree pattern t (candidate view)
out of tul, we need to decide on the annotations of each node n′ ∈ t correspond-
ing to n ∈ tul. We can annotate n′ with any of the four subsets of the attribute
set {ID, cont}, to indicate whether t stores an ID and/or the full serialized XML
image of the node. With respect to the val attribute, two cases occur: (i) if the
query node φul(n) is annotated with a predicate of the form [val = c], one may
label n′ with either val, [val = c] or no val label; (ii) if φ(n) has no such predicate,
we can annotate n′ with val, or omit the val label, but we cannot annotate with
[val = c] for any constant c, since this would prevent the existence of an embed-
ding φ : t → q and thus prevent t from being a candidate view for q. Thus, in the
worst case, there are 3 val annotation possibilities for n′, which, multiplied by the
4 possibilities of ID, cont annotation, lead to 12 possible node annotations for n′.
Assuming the size of tul (and t) is k, the node annotation possibilities alone lead
to 12k possible t trees out of a given tul.

Based on this, out of a query q, the number of candidate views of size k is:(|q|
k

)
× 2k× 12k, where the 2k factor is due to the edge labeling possibilities and the

12k factor is due to node annotations. It follows that |CS0(q)| is:
|q|∑
k=1

(|q|
k

)
× 2k × 12k =

|q|∑
k=0

(|q|
k

)
× 24k − 1 = 25|q| − 1

We end the discussion of candidate views for tree pattern queries with an in-
teresting remark. Given a workload Q and view set V , we say a view v ∈ V is
useful if v is used in the best rewriting of some query q ∈ Q using V . The set of
useful candidate views for a query is guaranteed to be quite small: it turns out
that a minimal rewriting of a tree pattern query q uses no more than 2× |q| views
[MKVZ11]. However, we do not know which are the useful views before rewrit-
ing all the queries; moreover, our aim is to select views that are globally best for
the whole workload. Thus, one cannot use this known small bound to prune out
candidates.

3.3.1.2 Candidate Views for a Query with Value Joins

We now turn to the case of a tree pattern query q with value joins. One can
show that a view v may participate in an equivalent rewriting of q only if there
exists a set of tree embeddings φ1 : tv1 → tq1, φ2 : tv2 → tq2 etc. embedding each view
tree pattern to some query tree pattern, and satisfying the following condition. For
each value join in v of the form nvi .val = nvj .val, where nvi , n

v
j are nodes in the view

tree patterns tvi , respectively tvj , the query must feature a value join edge between
the nodes φi(nvi) and φj(nvj).

For example, consider the view v2, with a value join between the year nodes of
its tree patterns, and the query q in Figure 2.3. Let φl the embedding from v2’s left
subtree into the right subtree of q, and φr the embedding from v2’s right subtree
into the left subtree of q. Observe that φr and φl map the year nodes of v2 into
the two year nodes of the query, thus the condition for v2 to participate in some

30 CHAPTER 3. MATERIALIZED VIEW SELECTION FOR XQUERY

rewriting of q is satisfied. The intuition is that a view with “more join predicates”
than the query cannot be used to rewrite it, following the similar property of
relational containment mappings.

More generally, let q be a query q consisting of k tree patterns tqi , 1 ≤ i ≤ k,
and assume q has m value joins. We enumerate the candidate views as follows.
(i) Build the candidate view sets CS0(t

q
i) for 1 ≤ i ≤ k; (ii) For each subset

{i1, i2, . . . , in} of {1, 2, . . . , k}, and each set of candidate tree patterns t1 ∈ CS0(t
q
i1

),
t2 ∈ CS0(t

q
i2

) etc., create the candidate view t1 × t2 × . . . × tn. Then, let JE be
the set of query value join edges, such that embeddings from t1, t2, . . . , tn into
the query reach both ends of the value join edge. For each subset of J ⊆ JE,
we generate a distinct candidate view by pushing on top of t1 × t2 × . . . tn the
join conditions of J . Overall, the number of candidate views for q is bound by
2m × |CS0(t

q
1)| × |CS0(t

q
2)| × . . .× |CS0(t

q
k)|.

For example, in Figure 2.3, to obtain candidate views for q, one can first chose
{i1 = 1} and generate the set CS1

0 of all candidate tree patterns for the left subtree
of q; then, chose {i1 = 2} and generate the set CS2

0 of all candidate tree patterns
for q’s right subtree; finally, choosing {i1 = 1, i2 = 2} leads to enumerating all
combinations of the form {t1, t2 | t1 ∈ CS1

0, t2 ∈ CS2
0} and, for each such t1 and t2:

(a) add the view t1 × t2 to the candidate set of q; (b) if t1 and t2 both have a year
node, also add the view t1 ./year.val t2 to the candidate set.

The number of candidate views for all queries in a workload may be pro-
hibitively high. Of course, the more commonality the queries exhibit, the more
common candidates they may have, but this still leaves a large number of candi-
date views.

3.3.2 Pruning Candidate Views

We now describe several methods for pruning candidate views. We start by in-
troducing two important notions. Let Q be a workload and V1, V2 be two candidate
view sets.

Definition 3.3.2 (Rewriting power preservation). If, for every query q ∈ Q and
rewriting r of q using views in V1, there exists a rewriting r′ of q using views from V2,
we say that replacing V1 with V2 preserves rewriting power.

Rewriting power preservation ensures that V2 enables to rewrite at least the
queries V1 did. However, it says nothing about the cost of the rewritings using V2.
The following notion is more restrictive:

Definition 3.3.3 (Rewriting cost preservation). If (i) replacing V1 with V2 preserves
rewriting power and (ii) for any query q ∈ Q and rewriting r of Q using V1, there
exists a rewriting r′ of q using the views V2 such that cost(r′) ≤ cost(r), we say that
replacing V1 with V2 preserves rewriting costs.

We now describe several candidate view pruning techniques. Based on a set of
candidate views V , our first techniques each focus on a tree pattern query. Then
we discuss pruning methods targeting queries with value joins.

3.3. CANDIDATE VIEW SETS 31

NOCART Eliminating views with cartesian products, i.e., those having a pattern
unconnected (by a value join) to any other tree pattern, can significantly reduce
the number of candidates. For instance, for a query of 2 tree patterns t1, t2 com-
bined by a value join, avoiding cartesian products leads to an upper bound re-
duction from 2 × |CS(t1)| × |CS(t2)| to |CS(t1)| + |CS(t2)|. However, in the case
that the query features a cartesian product, and that the space budget allows it, it
may be a good idea to materialize it. We define the pruning method NOCART as
pruning away candidate views with a cartesian product such that in the query, the
corresponding tree patterns are connected by a value join.

Formally, let cv be a candidate view for a query q. If cv comprises a cartesian
product of two tree patterns, tv1, t

v
2, then there must exist two tree patterns tq1, t

q
2

in the query, such that tv1 embeds into tq1, t
v
2 embeds into tq2, and tv1, t

v
2 are not

connected by a join edge in the query (that is, the cartesian product of tq1 and tq2 is
a sub-expression of the query). NOCART preserves rewriting power and cost.

TRIMAXIS We have mentioned earlier in this section that by labeling candidate
view edges either / or //, one gets 2k possible edge labelings for a k-node view.
Our TRIMAXIS pruning method eliminates some of the options brought by the edge
labeling possibilities. For example, consider a workload consisting of the query q
of Figure 3.1 and a view set including the candidate views cv5 and cv6 in the same
Figure. In this case, TRIMAXIS will remove cv5, since it has an ancestor-descendant
edge // mapped only to a parent-child query edge. TRIMAXIS will preserve cv6,
identical to cv5 except for the label of the edge between a and c.

Formally, we define this pruning as follows: let v1, v2 be two views in V , iden-
tical except for one edge: e1 in v1 is of the form n1

1/n
2
1, and e2 in v2 is of the

form n1
2//n

2
2, n

1
1 and n1

2 have the same label, while n2
1 and n2

2 have the same label.
Assume that for every q ∈ Q and every embedding φ2 : v2 → q, there is an embed-
ding φ1 : v1 →q such that φ1(n

1
1) = φ2(n

1
2), φ1(n

1
2) = φ2(n

2
2) and φ1, φ2 coincide on

all the other nodes of v1 and v2. Then, TRIMAXIS transforms V into the view set
V ′ = V \ {v2}, in other words it removes v2.

It can be shown that TRIMAXIS preserves rewriting power, because for every
rewriting r based on v2 one can build a rewriting r′ based on v1 computing the
same results. TRIMAXIS also preserves rewriting costs, since v1 stores at most as
much data as v2.

One may wonder whether TRIMAXIS should not also work the other way
around, that is, prune views with / edges if they only match // edges in work-
load queries. However, such views views, because they do not embed into the
query. For instance, if the query is //a//bcont, the view //a/bcont cannot be used to
rewrite it, thus it is not a candidate view.

TRIMVAL Let v ∈ V be a view and n be a view node. Assume that the set of all
embeddings of v into workload queries is {φ1 : v → q1, φ2 : v → q2, . . . , φk : v →
qk}. Assume that for any 1 ≤ i ≤ k, the query node φi(n) is neither annotated val
nor with a predicate of the form [val = c] neither takes part in any value-join. The
Pruning method TRIMVAL replaces v in V with a copy v′, in which the copy of n is

32 CHAPTER 3. MATERIALIZED VIEW SELECTION FOR XQUERY

q

a

ccontbval

×
cv1

bID,cont

X
cv2

aID

cID,contbID

×
cv3

aID,val

bID,val

X
cv4

aID

bID

×
cv5

aID

cID,cont

X
cv6

aID

cID,cont

×
cv7

a

bID

Figure 3.1: Sample query and some of its candidate views.

not annotated val.
For instance, in Figure 3.1, TRIMVAL replaces the view cv3 with a copy of cv3

whose a node is not annotated with val. The replacement takes place since the a
query node q is not annotated val, nor [val = c], and does not take part in a value
join.

TRIMVAL preserves rewriting power, since it removes only val annotations that
are useless in any rewriting. It also preserves rewriting cost, since eliminating val
reduces view space occupancy without breaking any useful rewritings.

TRIMCONT It seems natural to remove unused cont annotations just like val ones.
One must take into account, however, that cont attributes can be used by rewriting
in a way that val does not support: as explained in Section 2.2.2, one may navigate
by applying an XPath expression within a cont attribute, to extract a subset of the
data stored in that node (recall the example in Figure 2.4). Thus, before removing
a cont, one must ensure this does not prevent some interesting navigation.

Formally, let n ∈ v be a node in a candidate view v and let {φ1 : v → q1, φ2 :
v → q2, . . . , φk : v → qk} be the set of all embeddings of v into Q queries. If for
any 1 ≤ i ≤ k, the query node φi(n) is (i) not annotated cont and (ii) a leaf in
qi, pruning method TRIMCONT replaces v with a copy v′, in which the copy of n
is not annotated cont. For instance, in Figure 3.1, TRIMCONT removes cv1 and
replaces it with a copy thereof, where the b node is not annotated cont. It is easy
to show that TRIMCONT preserves rewriting power and cost as it removes only
useless annotations.

3.3.3 Sets of Candidate Views

Many different candidate view sets can be used for solving our view selection
problem. We present four different view sets below.

View Set CS0 As described in Section 3.3.1, given a query workloadQ, the view set
CS0(Q) is the set of views that can be exhaustively enumerated by (i) enumerating
all non-annotated tree patterns that borrow their tags from q ∈ Q; (ii) creating
from each non-annotated tree pattern thus obtained, all possible tree patterns
that differ in their ID, val, cont and [val = c] annotations and; (iii) by generating
all possible joins and cartesian products between the generated tree patterns. The

3.4. VIEW SELECTION ALGORITHMS 33

CS0(Q)

CS1(Q)

CS2(Q)

Q

Figure 3.2: Venn diagram of the 4 view sets for a workload Q.

resulting CS0(Q) set contains views that are syntactically correct according to our
view language and are candidate views for a query q ∈ Q.

View Set CS1 For a query Q, we denote by CS1(Q) the set obtained from CS0(Q)
by applying TRIMAXIS, TRIMVAL, TRIMCONT and NOCART exhaustively, until none
of them applies any more. For example, in Figure 3.1, we mark the views that are
included in CS1(Q) with “X” and the ones pruned out with “×”.

Since the size of CS1(q) may still be quite high for large queries, we identify a
smaller candidate set:

View Set CS2 We denote by CS2(q) the candidate view set obtained by pruning out
from CS1(q) all candidate views that contain non-linear tree patterns. Thus, the
candidate view set is a view set containing candidates with linear tree patterns.
For a workload Q, we set CS2(Q) = ∪q∈Q CS2(q). For instance, in Figure 3.1, the
candidate view cv2 is part of CS1(q), but not part of CS2(q).

Figure 3.2 depicts a Venn diagram of candidate view sets for a query workload Q.

3.4 View Selection Algorithms

In this section we describe algorithms for solving the view selection problem.
Section 3.4.1 presents a simple exhaustive algorithm. Section 3.4.2 presents an
algorithm inspired from the classic Knapsack problem.

3.4.1 Exhaustive Search

A simple algorithm for finding the best candidate view set is:

1. enumerate all candidate views in CS0(Q)

2. generate the powerset P(CS0(Q))

3. compute the benefit of each set V ∈ P(CS0(Q)) and

34 CHAPTER 3. MATERIALIZED VIEW SELECTION FOR XQUERY

4. choose the set Vbest ∈ P(CS0(Q)) having the maximum benefit among those
who fit the space budget S.

Clearly, this algorithm computes the solution to our view search problem. How-
ever, due to the large size of CS0(Q) and even more of its powerset, it is unfeasible
for meaningful workloads Q.

3.4.2 Knapsack-style View Selection

Our view selection problem is closely related to the 0-1 knapsack problem. The
0-1 knapsack problem considers a set of k items having the space occupancy s1, s2,
. . ., sk and the benefits b1, b2, . . ., bk and tries to fill a space budget S with items
so as to maximize the sum of the benefits of the selected items. However, there is
a fundamental difference: in our case, since we support multiple-view rewritings,
the benefit of selecting one view depends on the presence of other views among
those already recommended for materialization. Considering that at some point
during an algorithm we have selected the view set V , what we need to identify
next is the candidate view (among those not already in V) that would lead to the
greatest benefit together with the views in V .

We adapt knapsack-style view selection to our setting as follows.

Definition 3.4.1 (View utility). For a given workloadQ and set of materialized views
V , the utility of a view v is the ratio between the benefit brought by materializing v
next to V , and the space occupancy of v: u(v) = b(V ∪ {v}, Q)/size(v).

Evaluating b(V ∪ {v}, Q) requires rewriting each query q ∈ Q using V ∪ {v},
which for large Q and V sets may be extremely expensive. One can reduce this
effort by rewriting only some queries q ∈ Q, namely those having a tree pattern
tq into which some tree pattern tv of v embeds. (It is easy to show that the best
rewritings of the other Q queries are not affected by the addition of v).

Utility-driven Greedy Algorithm (UDG) Our first utility-driven view selection
algorithm, based on a given candidate view set Vc, goes as follows:

1. initialize the recommended view set V to ∅;
2. compute the utility of each view v ∈ Vc;
3. sort the candidate views in descending order of their utility;

4. add the candidate with the highest utility to V , if it fits the space budget,
and remove it from Vc;

5. repeat steps (2)-(4) until no view v ∈ Vc has a strictly positive utility, or the
space budget S has been attained.

Observe that at step (2), the algorithm updates the utilities after each addition
to V . This is because the utility of a view v1 with respect to a view set V can either
increase or decrease when a view v2 is added to V . The utility of v1 may increase,
if v1 and v2 together enable a very efficient rewriting; the utility of v1 may decrease

3.4. VIEW SELECTION ALGORITHMS 35

if v2 is a competitor to v1, i.e., v2 enables a lower-cost rewriting than one enabled
by v1. The repeated recomputation of utility values brings quite some overhead,
especially since it requires calling an expensive query rewriting algorithm, such as
[MKVZ11, TYÖ+08]. An important remark allows to reduce this overhead: when
considering whether or not to add a view v1 to V , we only need to find out the
new rewritings (if any) that v1 enables. In turn, v1 can only lead to new rewritings
for those queries q ∈ Q such that there is an embedding φ : v → q (as explained
in Section 3.3.1). This observation significantly reduces the benefit recomputation
costs, especially for large workloads.

Algorithm UDG may miss the optimal solution. For instance, assume that query
q ∈ Q can be rewritten very efficiently based on v1 and v2, but neither v1 nor v2
suffice to rewrite q. In this case, the benefits of v1 alone and v2 alone may be
small, leading UDG to chose neither v1 nor v2 for materialization. This prevents
UDG from realizing how interesting it would have been to add both.

3.4.3 State Search-based View Selection

One can model our view selection problem as a state search problem. Every
state consists of a set of materialized views, and a benefit. The initial state corre-
sponds to a seed view set V0, having some benefit b(V0). By adding, modifying, or
removing a view from the initial state, one can obtain another state, characterized
by the view set V , having the benefit b(V), which may be higher or lower than
that of V0. Recall that the benefit is based on the cost of the best rewritings that V
supports. Thus, we represent view selection as an optimal-state search problem in
a directed graph, where nodes are states, and edges are transitions from one state
to another.

How should one pick the initial state, i.e., the seed set of views? We have
decided to start with V0 = Q, that is, the workload queries themselves. If Q needs
more space than S, the initial state is not a solution. To solve this problem, we
will introduce space-reducing transitions, allowing us to reach acceptable states.

In the following, Section 3.4.3.1 describes a set of view set transformations,
while in Section 3.4.3.2 we present a search algorithm based on these transforma-
tions.

3.4.3.1 State Transformations

The transformations we use determine the space of states that we can reach,
and how fast we find interesting states. Moreover, those we present below, when
applied on subset of CS1, can always yield another CS1 subset. Thus, there is a
close relationship between the transformations and the pruning criteria presented
in Section 3.3.2, which will be formalized at the end of this Section.

We start by describing a set of state transformations which can be shown not
to lose rewriting power (recall Definition 3.3.2). Such transformations are most

36 CHAPTER 3. MATERIALIZED VIEW SELECTION FOR XQUERY

interesting for us since our goal is to maximize benefit, and thus to rewrite as
many queries as possible.

BREAK Splitting a view in several sub-views may enable the identification of com-
mon sub-expressions across views. Transformation BREAK has three variants:

— Structural break: BREAK picks a view v ∈ V and a v edge connecting the
node n1 to its child node n2. It replaces the view set V with V \{v}∪{v1, v2},
where: v2 is a copy of the v subtree rooted at n2, and v1 is copy of v from
which n2’s subtree is removed. BREAK also adds ID annotations to the copy
of n1 in v1 and to the copy of n2 in v2. This ensures that any rewriting using
v is still possible by replacing v with: v1 ./n1≺n2 v2 if n2 is a /-child of n1,
respectively, v1 ./n1≺≺n2 v2 if n2 is a // child of n1.

— Value-join break: BREAK picks a view v ∈ V and a j value-join edge con-
necting two nodes n1, n2 ∈ v. BREAK removes the j edge and adds val
annotations to the nodes it used to connect. This may lead either to two
distinct views {v1, v2} (if the removed edge was the only one connecting
them), or to a single view having one less value join.

— Cartesian product break: BREAK picks a view v ∈ V and a cartesian product
of two sub-views of v, {v1, v2}, such that v ≡ v1× v2. BREAK replaces v with
{v1, v2}.

BREAK preserves rewriting power, since the broken join can always be rein-
forced, using either the ID, val attributes it introduced, or a cartesian product.

JOIN Opposite to BREAK, this transformation adds to the view set V the join of two
views v1, v2 ∈ V . This transformation may reduce costs by pushing a join from the
query into some view. For example, consider the views v1: //aID and v2: //bID,V al
and the query q1 //a//bV al. To evaluate q1, one has to scan both views, and join
them as follows: v1 ./aid≺≺bid v2. Transformation JOIN adds to V the new view
v1,2 = //aID//bID,V al, which is exactly the result of the join. Similarly, JOIN joins
two views with a value-join or a cartesian product. Note that JOIN joins two views
only if the resulting view respects the TRIMAXIS and NOCART pruning techniques
of Section 3.3.2.

GENERALIZE GENERALIZE tries to identify commonality between workload queries
by generalizing/relaxing a candidate view. Relaxing a candidate view may in-
crease its space occupancy but it makes it more reusable. GENERALIZE has two
variants:

— Cont generalization: GENERALIZE picks a view v ∈ V and a non-leaf node
n ∈ v, and replaces v by a view v′ in which the child subtrees of n
have been erased and n has been annotated cont. For instance, if v is
//a[//b]//c[//dcont]/eval, GENERALIZE may replace it with //a[//b]//ccont if
the c node is chosen, or //acont if the a node is chosen.

— V al generalization: GENERALIZE picks a view v ∈ V and a node n ∈ v which
is annotated with a equality predicate of the form n[val=c] and replaces v

3.4. VIEW SELECTION ALGORITHMS 37

with a view v′ in which:
1. node n is no longer annotated with an equality predicate and
2. node n is annotated val.
For instance, if v is //a//b[val=3], GENERALIZE replaces it with //a//bval.

GENERALIZE applies to a view only if the resulting view respects the TRIM-
CONT and TRIMVAL pruning techniques. GENERALIZE preserves rewriting power.
However, it can either increase or decrease the storage space, and thus rewriting
cost.

ADAPT A candidate view may turn out to be more general than any of the queries
into which the view embeds. In this case, transformation ADAPT adds a query-
adapted view, typically smaller, which may also reduce query cost by removing the
need for processing the view to adapt it to the query. Two variants of adaptation
exist:

— Pick a view v ∈ V , a // edge e of v and an embedding φ : v → q for some
q ∈ Q. Denote by n1 the node above e and by n2 the node below e. If φ
maps e either to (a) a / path or (b) a path of length greater than one, add
to V the view v′ obtained by copying v and in the copy, replacing e with
the path to which e maps. For example, if the view v /a//d embeds in the
query /a/b/c/d, add the view v′: /a/b/c/d.

— Pick a view v ∈ V , a cont-labeled node n ∈ v and an embedding φ : v → q
such that φ(n) has some children. Add to V a view v′ obtained by copying v
and adding as children to (the copy of) n in v′, all the child subtrees of φ(n)
in q. For example, if the view //acont embeds into the query //a[//c/d]/bval,
add the view //acont[//c/d][b].

Observe that the symmetric situation to our first adaptation case, i.e., a view
//a/bval and a query //a//bval, does not occur, since such a view is not a candidate
for the query (Section 3.3.1).

PROJECT When a view stores attributes not needed by any of the rewritings, we
can remove these stored attributes to diminish view space occupancy. Transfor-
mation PROJECT picks a view v ∈ V and replaces it with a view v′ restricted to a
subset of the stored attributes (ID, val, cont or [val = c]) of v.

RANDOM Adding a candidate view to the materialized view set increases view
storage size and may also increase benefit if the new view enables some rewrit-
ings efficient enough to offset the storage costs. Transformation RANDOM picks a
candidate view not already in V , and adds it to the view set.
Our last transformations may trade rewriting power for space:

REMOVE and REMOVE0 Removing a view decreases view storage size and may
reduce the benefit of a state. Transformation REMOVE picks a view and removes
it from the view set, while REMOVE0 only removes zero-utility views. REMOVE0
preserves rewriting power and cost, while REMOVE is not guaranteed to do so.
Both allow reducing space occupancy.

38 CHAPTER 3. MATERIALIZED VIEW SELECTION FOR XQUERY

Importantly, REMOVE0 can be applied after a transition which has added a view
v1, to identify some view v2 rendered useless by the addition of v1. In this case,
REMOVE0 eliminates v2.
We also define some variations of our transformations. We consider the repeated
exhaustive application of a transition τ , and use the shorthand V1

τ∗−→ Vk to state
that repeated application of τ led from V1 to V2, from V2 to V3 etc. until Vk. In
particular, REMOVE* repeatedly removes the least benefit view from a state V until
it fits in the space budget S, REMOVE0* removes all unused views from a state V ,
while PROJECT* removes all unused attributes from all views v ∈ V . It can be
shown that the state attained by REMOVE0*, or by PROJECT*, does not depend on
the order in which the transformations are applied.

Which transition sets suffice to reach all candidate view sets? Since the answer
depends on the candidate views and on the initial state, we include them in the
definition:

Definition 3.4.2 (Transformation set completeness). Let Q be a workload, CS ⊆
CS0(Q) be a set of candidate views and V0 an initial state in CS. A set of transfor-
mations T = {τ1, τ2, . . . , τn} is CS and V0-complete iff for any set of views V ⊆ CS,

there exists a sequence of states V0
τi1−→ V1

τi2−→ . . .
τik−→ V , where for 1 ≤ j ≤ k,

τij ∈ T .

Clearly, the set {RANDOM, REMOVE} is complete for any candidate view set
CS ⊆ CS0(Q), and initial view set V0 ∈ CS, since RANDOM allows generating all
possible candidate view sets. However, the transformation path from V0 to V may
be arbitrarily long. Below we present a more practical transformation set.

Proposition 3.4.1. The transformation set {BREAK, JOIN, GENERALIZE, PROJECT,
REMOVE} is CS1(Q) and V0 complete for V0 = Q.

The completeness follows from the ability of BREAK to break the initial view set
all the way to one-node ID-annotated views, JOIN to glue back the pieces to build
V , PROJECT out possible extra annotations, GENERALIZE to annotate view nodes
with cont or val. Extraneous views can be removed with REMOVE.

We end by noting that an exhaustive application of BREAK, JOIN, PROJECT,
GENERALIZE and REMOVE on V0 = Q is still likely to be very costly, first, because
of the large number of states reached, and second, because the calls to the rewrit-
ing algorithm (needed after every transformation) are very expensive, motivating
further interest in searching for heuristics.

3.4.3.2 Reduce-Optimize Algorithm (ROA)

Based on the above transformations, we devised a search algorithm with a
randomized component, which we term Reduce-Optimize Algorithm (or ROA, in
short). ROA repeatedly executes two successive phases: first, the reduce phase
which seeks to reduce the space occupancy of a state, by applying a chain of trans-
formations on it; then, the optimize phase which attempts to increase the benefit

3.4. VIEW SELECTION ALGORITHMS 39

Algorithm 2: Reduce-Optimize Algorithm (ROA)
Input : Query workload Q, candidate view set CV, space budget S
Output: Best view set Vbest

1 Vbest ← ∅; V ← Q // V is the current state
2 V ← rewriteAndTrim(V,Q)
3 S ← ∅ //the set of states on which a reduce-then-optimize sequence has been applied
4 while !timeout do
5 S ← S ∪ {V }
6 // reduce phase:
7 foreach τ ∈ {BREAK, JOIN,GENERALIZE, ADAPT, REMOVE*} do
8 V ′ ← τ(V) //apply τ to V
9 V ′ ← rewriteAndTrim(V ′, Q)

10 if size(V ′) < size(V) then
11 V ← V ′ //we found a smaller state, reduce will continue on this one

12 else
13 //ignore V ′, reduce will continue on V

14 if size(V) ≤ S then
15 break //end of reduce phase

16 //optimize phase:
17 foreach τ ∈ {ADAPT, JOIN} do
18 V ′ ← τ(V) //apply τ to V
19 V ′ ← rewriteAndTrim(V ′, Q)
20 if b(V ′, Q) > b(V,Q) then
21 V ← V ′

22 //seek a new state on which to apply reduce-then-optimize:
23 while V ∈ S do
24 //at most k attempts of adding a random view
25 foreach i ∈ 1, 2, . . . k do
26 V ← V ∪ {v chosen at random from CV, v 6∈ V }
27 V ← rewriteAndTrim(V)
28 if V 6∈ S then
29 break

30 if V ∈ S then
31 V ← REMOVE(V); V ←rewriteAndTrim(V)

32 return Vbest //updated by calls to procedure rewriteAndTrim

of the target state. Both phases follow a trial-and-error approach, that is, an at-
tempted transformation may fail to reduce space during reduce, or fail to increase
benefit during optimize. If this happens, reduce (respectively, optimize) simply ig-
nores the unsatisfactory target state and continues applying other transformations
starting from the previously attained state.

One phase may also reach the desirable effect of the other, that is, optimize

40 CHAPTER 3. MATERIALIZED VIEW SELECTION FOR XQUERY

Algorithm 3: Procedure REWRITEANDTRIM

Input : View set V , workload Q
Output: Restriction of V to the views and attributes needed by the best rewritings

of Q. Side effect on Vbest
1 E ← {rewrite(q, V)|q ∈ Q}
2 W ← PROJECT*(REMOVE0*(V)) //remove views and IDs not used in the best

minimal rewritings
3 if cost(Q|W) < cost(Q|Vbest) and size(W) ≤ S then
4 Vbest ←W

5 return W

can reduce the space occupation of a state and reduce can increase the benefit of
a state. However, most often, these objectives conflict, thus each phase strictly
attempts to obtain one of the two improvements.

As described above, reduce and optimize explore the space in quite a linear fash-
ion, that is, the fan-out of the search is low: if, say, the first transition attempted
on V0 during reduce does diminish space occupancy, we move to the resulting state
V1 and do not come back to V0 to apply other transformations to it. A small search
fan-out is desirable since exploring all possibilities would lead to too many states
and unacceptably slow down the search. However, a disadvantage is that this leads
to never visiting large parts of the search space and potentially missing interest-
ing states. To cope with this, whenever reduce or optimize find a state on which
the reduce-optimize sequence has already been applied, ROA jumps to a randomly
chosen state, and continues the search from there.

As Algorithm 2 shows, the best state returned by ROA is stored in its local
variable Vbest. To simplify the description, we assume Vbest is modified by the helper
procedure rewriteAndTrim (Algorithm 3). This procedure is the only place where
the (costly) rewrite algorithm of [MKVZ11] is called. After each call, the incoming
view set V is trimmed down by exhaustively applying PROJECT and REMOVE0, and
the trimmed-down version W is returned.

Algorithm’s ROA exploration history is stored in the set S of all states on which
reduce has been applied followed by optimize. During the reduce phase, it succes-
sively tries several transformations.

If a transformation reduces storage space, the next will follow from the re-
duced state, otherwise, ROA will apply it again on the start state V . The reduce
phase ends either when 5 successive transformations have been applied, or when
the size of the state found so far has decreased under the space budget S. Simi-
larly, optimize attempts to apply two transformations to increase the current state
benefit. Finally, after the two phases, we need to find a new state to work on.
If the current state (reached at the end of optimize) has not yet gone through
the two phases, ROA restarts reduce from there. Otherwise, we successively draw
k random candidate views, and check if they enable new rewritings. Observe
that rewriteAndTrim may remove these views, or views from V , when they are

3.5. CLOSEST COMPETITOR ALGORITHMS 41

rendered useless by a randomly-added view. We have empirically set k to be 40
which gave good results; a large k increases the chances of finding a good view
but lengthens the search. Finally, if k successive view additions did not lead to
a new state, we REMOVE some views until a non-visited state is reached. ROA
needs to stop on a timeline, since completing its randomized search would take
unacceptably long.

Remarks on the Implementation To increase ROA efficiency, we let it take hints
from the query optimizer, in order to restrict the space of alternatives for its trans-
formations. Specifically, the REMOVE0 and PROJECT transformations are only ap-
plied to remove attributes and views unused by the best rewritings of the workload
queries (instead of “unused by any rewriting”). Similarly, JOIN only attempts to
build view joins that are part of some query’s best rewriting. This is possible thanks
to the fact that rewritings are passed as algebraic expressions from the rewriter to
the optimizer, and from there to the view selection.

Another concern is to be able to quickly identify (line 23) whether a state is
already in S. To efficiently support this, we index states by (string) signatures of
their views, as follows. Let V = {v1, v2, . . . , vn} be a view set and assume first
that each vi is a (minimal) tree pattern [AYCLS02]. We compute serialized signa-
tures of the V views {s(v1), s(v2), . . . , s(vn)}, and sort them into a list s(vi1), s(vi2),
. . . , s(vin) where (i1, i2, . . . , in) is some permutation of (1, 2, . . . , n). Then, S can be
organized as a multi-level hash structure where V is first indexed by s(vi1), then
by s(vi2) and so on up to s(vin). This structure allows determining with certainty
by n look-ups whether a given state V of n tree pattern views has already been
explored or not. In the general case (tree patterns with value joins), we encode
a view of the form t1 ./ t2 .// tk as if it was the set of views {t1, t2, . . . , tk}.
This introduces some imprecision in the state look-up, e.g., when looking up the
view set V1 = {t1 ./ t2}, one may (also) find the different view set V2 = {t1, t2}. In
this case (views including value joins), one still needs to check whether the state
found by the multi-level look-up really is the same as the one we searched for, but
overall, the search remains quite efficient.

3.5 Closest Competitor Algorithms

An early materialized view selection work for downward XPath (including
wildcard ∗ nodes) is [MS05]. To select materialized views, they use an algo-
rithm inspired from the greedy polynomial approximation of a set-cover problem
[RN03], by defining view utility as the number of queries that it answers. Their
set-cover greedy algorithm (which we denote SCG from now on) has an upper
bound M on the number of views that can be recommended. In our implementa-
tion of SCG, to make a meaningful comparison, we dynamically set M to be the
number of views selected by SCG that happen to reach our space bound S.

More recently, [TYT+09] studied view selection for the same XPath dialect.
From an XPath workload, they identify a subset of candidate views, consisting of

42 CHAPTER 3. MATERIALIZED VIEW SELECTION FOR XQUERY

 0

 10

 20

 30

 40

 50

 60

S/6 S/4 S/2 S

%
 o

f
e

v
a

lu
a

ti
o

n
 t

im
e

 v
e

rs
u

s
e

v
a

lu
a

ti
n

g
 q

u
e

ri
e

s
 f

ro
m

 d
o

c
s

SOA
UDG

SCG
STT

ROA

 0

 10

 20

 30

 40

 50

 60

S/6 S/4 S/2 S

%
 o

f
e

v
a

lu
a

ti
o

n
 t

im
e

 v
e

rs
u

s
 e

v
a

lu
a

ti
n

g
 q

u
e

ri
e

s
 f

ro
m

 d
o

c
s

SCG ROA

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

S/6 S/4 S/2 S

%
 o

f
e

v
a

lu
a

ti
o

n
 t

im
e

 v
e

rs
u

s
 e

v
a

lu
a

ti
n

g
 q

u
e

ri
e

s
 f

ro
m

 d
o

c
s

SCG ROA

Figure 3.3: Workload execution time for the workloads Q1, Q2 and Q3 (respec-
tively, from left to right) based on views selected by various algorithms.

the minimal XPath queries based on which at least one query may be answered.
This set can be organized as a lattice of size 2|Q| which two algorithms rely on in or-
der to recommend views. First, the dynamic-programming based space-optimized
algorithm (denoted SOA in the sequel) searches for the smallest view set that can
rewrite all the workload. Their second algorithm which we denote STT seeks to
optimize a space/time trade-off. It assigns to each view a benefit computed by
summing the weights of the queries it can answer (regardless of the costs), divided
by the view size. STT then greedily selects views in the decreasing order of their
utility, until the space budget is filled up or all workload queries can be rewritten
using the views.

Conceptually, the biggest difference between these and our algorithms is that
they only apply for XPath queries returning single nodes. To compensate for this,
we plugged in our implementation of SCG, SOA and STT the query rewriting,
embedding etc. modules relevant for our language (Section 2.2.2).

A second important difference is: when considering XPath with one returning
node, as [MS05] and [TYT+09] do, each query can only be re-written based on
at most one view, whereas we (as well as e.g., in [CDO08, ODPC06, TYÖ+08])
consider query rewritings based on multiple views. This significantly complicates
our setting, since for each query q and n candidate views, up to 2n view sets
may be used to rewrite q, instead of just n. Also, as our experiments will show,
the algorithms [MS05, TYT+09] by design do not capture the opportunities of
multiple view-based rewritings, and in our setting, different algorithms exploiting
these opportunities can achieve much better savings.

3.6 Experimental Evaluation

We now describe experiments we have performed with our and previous view
selection algorithms. Section 3.6.1 outlines our software experimental frame-
work, we describe the data and workloads in Section 3.6.2 and the algorithms
with their settings in Section 3.6.3. Section 3.6.4 study candidate view set sizes,
Section 3.6.5 algorithm effectiveness, and Section 3.6.6 their efficiency. We end
with a conclusion of the experiments.

3.6. EXPERIMENTAL EVALUATION 43

 0

 20

 40

 60

 80

 100

S/6 S/4 S/2 S

%
 o

f
q

u
e

ri
e

s
 a

n
s
w

e
re

d
u

s
in

g
 v

ie
w

s

SOA
UDG

SCG
STT

ROA

 0

 20

 40

 60

 80

 100

S/6 S/4 S/2 S

%
 o

f
q

u
e

ri
e

s
 a

n
s
w

e
re

d
u

s
in

g
 v

ie
w

s

SCG ROA

 0

 20

 40

 60

 80

 100

S/6 S/4 S/2 S

%
 o

f
q

u
e

ri
e

s
 a

n
s
w

e
re

d
u

s
in

g
 v

ie
w

s

SCG ROA

Figure 3.4: Fraction of queries from the workloads Q1, Q2 and Q3 (respectively,
from left to right), rewritten using the recommended views of different algorithms.

3.6.1 Framework

We have implemented our view selection algorithms within a Java-based XML
data management platform that we developed. The platform supports the materi-
alization of the complex XML views, featuring tree patterns with multiple return-
ing nodes and value joins, described in Section 2.1.4.1. View tuples are stored
into a native store that we built using the Berkeley DB library v3.3.75. The plat-
form also provides a view-based rewriter module which, given a query q and a set
of materialized views V , returns the best rewriting of q using views in V , as dis-
cussed in Chapter 2. Its optimizer takes as input the rewritings (logical plans over
the views), pushes selections and projections, re-orders joins, identifies groups of
binary structural joins to be transformed in an n-ary holistic twig join etc. Logical
plans are then translated into physical plans including operators to: scan mate-
rialized views, apply selections, projections, value-based or structural joins (e.g.,
holistic joins [BKS02]), add Sort operators when needed etc. To evaluate tree pat-
terns directly on the data, as well as nav operators, we implemented an efficient
XML stream-based tree pattern matching algorithm [CDZ06]. The physical plan
cost estimation function costε takes into account the I/O cost of scanning views, as
well as the CPU costs of selections, projections, joins, navigation, sort etc.

We have implemented our view size estimation function sizeε(v) (as described
in Chapter 2, Section 2.3) based on a DataGuide [GW97] augmented with detailed
statistics for each parent-child path p starting from the root of a document d: num-
ber of nodes on path p, minimum, average and maximum number of children of
a node on path p on each child path, minimum and maximum string value of the
nodes, number of distinct string values, average size of cont etc. Our sizeε(v)
function also makes simple independent-distribution and uniform-distribution as-
sumptions. More elaborate estimations such as e.g., TreeSketch [PGI04] could
easily plugged instead in our view selection approach.

3.6.2 Inputs: Data, Queries and Space Budget

We used 10 synthetic XMark benchmark [SWK+02] documents of 100 MB each
resulting in a total of 1 GB.

44 CHAPTER 3. MATERIALIZED VIEW SELECTION FOR XQUERY

Workload |CS0|max |CS0|max |CS1| |CS2|
Q1 1012 1013 5944 992
Q2 1012 1013 7582 1054
Q3 1012 1013 10014 1454
Q4 1016 1016 8570 1250

Table 3.1: Size of candidate view sets CS0, CS1 and CS2.

Four our tests, we generated four random query workloads based on the XMark
document structure and content. First, we use three tree pattern query workloads
Q1 of 14 queries, Q2 having 50 queries and Q3 of 100 queries. We picked the size
of Q1 as the largest that all algorithms could handle, and Q2, Q3 to study further
scale-up. Q1, Q2 and Q3 only have tree pattern queries; each query has between 3
and 8 nodes. We added a fourth workload Q4 of 50 queries, 10 of which have value
joins; Q4 queries have between 6 and 15 nodes. All queries have 2 to 4 returning
nodes.

Within each workload, we varied query selectivity as follows. From each doc-
ument (each 1/10 of the data), 30% of the queries return just 1 result, 30% return
a few hundred results, while 30% return a few thousand results. The remaining
10% of the queries return hundreds of thousands of results.

Clearly, materializing the workload is the best solution if the space budget
allows it, but the interesting area is when this is not possible due to space con-
straints. For that purpose, we have taken S =

∑
q∈Q size(q), and tested with the

space budgets: S/6, S/4, S/2 and S. The main interest of the S value is to show
the minimum possible query processing cost.

3.6.3 Algorithms and Settings

We have implemented our algorithms UDG (Section 3.4.2) and ROA (Sec-
tion 3.4.3.2), as well as SCG [MS05], SOA and STT [TYT+09] discussed in Sec-
tion 3.5. Our UDG algorithm is quite similar to STT [TYT+09]: beyond their
rewriting differences, their benefits are different (our includes processing costs
and query weights, theirs only query weights), but the greedy approach is the
same.

The SCG, SOA and STT algorithms start with the workload itself. Concerning
our own algorithms, we used V0 = ∅ for UDG since it proceeds by adding views
(thus we start it with all the allowed space free), and V0 = Q for ROA which is
more powerful and can change (break, join, adapt etc.) views in many ways. We
experimented with UDG and ROA both on the CS1 and CS2 candidate view sets.
For the workloads we tested, they lead to similar results, thus we report on our
UDG and ROA experiments using CS1 as a candidate view set.

We used a desktop having an Intel Xeon CPU 5140 @2.33 Ghz, 4 GB of RAM
and a 60 GB SCSI hard disk at 10.000 RPM.

3.6. EXPERIMENTAL EVALUATION 45

3.6.4 Candidate View Set Size

Our first experiment studies the size of the candidate view sets CS0, CS1 and
CS2 (discussed in Section 3.3.2) for the four workloads. Exhaustive enumeration
of CS1 views is not possible even for medium-size queries, e.g., for a tree pattern
of 8 nodes, the |CS0| bound is 258 ≈ 152 billions. Instead, we use a lower bound
CSmin0 assuming that all workload queries are the same (thus, their candidate
views overlap) and an upper bound CSmax0 assuming the queries have nothing in
common (thus all candidate views are different). We built and counted the actual
sets CS1 and CS2. Table 3.1 shows the candidate view counts. Candidate views are
reduced by many orders of magnitude using the pruning techniques presented in
Section 3.3.2. This makes view-based rewriting (and thus, candidate view search)
feasible.

3.6.5 View Selection Algorithm Effectiveness

We ran the existing algorithms SCG, SOA, STT and our algorithms UDG and
ROA on tree pattern queries, which they were all built for (modulo the many re-
turning nodes, for which we adapted the competitors as explained in Section 3.5);
we the workloads Q1, Q2 and Q3. We then materialized their recommended views,
evaluated the rewritings within our execution framework three times, measured
the average time, and show it in Figure 3.3 as a percentage of the time to evaluate
the queries directly on the database.

The first observation is that SOA, STT and UDG do not scale beyond Q1. For
SOA and STT, this is because they develop a candidate view set whose size is
exponential in the size of the query, and this does not fit in the memory for larger
workloads (similarly, [TYT+09] tests them on a 16-queries workload). For the
50-queries workload Q2, our UDG algorithm had not finished running after two
hours, when we stopped it. This is because UDG needs to update the benefit of
every candidate view after each view addition, which in turn requires rewriting
all the workload queries for every candidate view. Thus, for Q2 and Q3 we only
measured SCG and ROA.

We also noticed that for Q1, SOA failed to recommend any view (thus the
evaluation time is plotted as 100% of the time to evaluate on the database directly)
when given a space budget of at most S/2. This is because SOA only seeks view
sets that can rewrite the whole workload, which for Q1 could not be found at an
S/2 space budget. In contrast, as expected, the greedy STT finds interesting view
sets saving 50% of the execution costs or more.

Overall, for any workload and space budget, the ROA algorithm achieved the
largest query processing cost reductions. This is because it exploits all rewriting
possibilities: it tries to use both navigation (GENERALIZE transformation) and joins
of several views (BREAK and JOIN transformations), aggressively prunes needless
views and attributes (REWRITEANDTRIM), opportunistically modifies candidates
to suit the queries (ADAPT transformation), and finally manages to visit sufficient
parts of the search space through random jumps (RANDOM transformation). The

46 CHAPTER 3. MATERIALIZED VIEW SELECTION FOR XQUERY

 0

 20

 40

 60

 80

 100

S/6 S/4 S/2 S

Hit Ratio
% of evaluation time

Figure 3.5: ROA performance on the workload Q4.

 0

 500

 1000

 1500

 2000

Docs SCG ROA
S/6

SCG ROA
S/4

SCG ROA
S/2

SCG ROA
S

T
im

e
 (

s
e

c
)

Workload Eval. Time from documents (x2)
Workload Eval. Time (x2)

Materialization Time
Algorithm Execution Time

Figure 3.6: Overall performance of SCG and ROA.

greedy SCG does not perform as well because it does not consider multiple-view
rewritings. We confirmed this intuition by inspecting the ROA-selected views:
queries were typically rewritten using 2-3 views.

Figure 3.4 gives a different perspective on the same experiment: which fraction
of the workload queries are rewritten based on the recommended views. ROA also
is best in this respect.

For the workload Q4 with value joins, we only ran ROA since it is the only one
handling them. Figure 3.5 shows (in %) the workload evaluation cost reduction
wrt evaluation on the database, and the ratio of queries rewritten by the ROA-
selected views. This confirms the good properties of ROA also for queries with
value joins.

3.6. EXPERIMENTAL EVALUATION 47

S/6 S/4 S/2
60% 80% 100% 60% 80% 100% 60% 80% 100%

Q1 1 1 5 1 1 15 1 1 1
Q2 1 1 25 1 1 25 1 2 2
Q3 1 2 15 2 2 3 2 2 20
Q4 1 1 13 1 1 1 1 1 1

Table 3.2: ROA time to attain increasing benefits (minutes).

3.6.6 View Selection Algorithm Efficiency

We now study the performance of the view selection algorithms themselves.
Based on the findings of the previous section, we study only SCG and ROA, on
the 100-query workload Q3. Figure 3.6 depicts the time needed by SCG and ROA
to (i) select the views to materialize (algorithm execution time). We let ROA run
for 2 hours, and plot the time it needed to achieve 90% of its maximum bene-
fit; (ii) materialize the views recommended by SCG and ROA (iii) evaluate all
queries, twice based on the views. As a reference, we also show the time to evalu-
ate all queries twice directly on the data. We timed two executions since views are
typically materialized to support repeated query execution; in this case, two exe-
cutions already enable the views to pay off, that is, the time to select, materialize,
and exploit the views to evaluate the queries is smaller than the time to evaluate
the queries directly on the database.

In this experiment, selecting, materializing and exploiting views paid off even
for a single execution (except, of course, when materializing the workload itself).
Moreover, SCG is much faster than ROA: SCG execution time is invisible in the
Figure. This is because the greedy SCG never comes back on its decisions, whereas
ROA investigates more complex view configuration settings, and may search for a
long time due to its randomized component.

Showing the ROA time only up to attaining 90% of its biggest benefit may seem
to give it an unfair advantage, since in practice we only stopped it after 2 hours.
However: (i) increasing the view-based evaluation time in Figure 3.6 by a factor of
100/90 does not change the overall picture and (ii) the robustness of the relatively
quick cost reductions of ROA is confirmed by our next experiment.

Table 3.2 depicts the evolution of benefit through ROA execution. For each
workload and space budget, we show the time (in minutes) it has taken ROA
to attain 60%, 80% and 100% of the biggest benefit found in two hours. In all
cases, 80% of the benefits were attained in just 2 minutes, while the maximum
benefit was always attained within 25 minutes. While such times are still much
longer than e.g. the greedy SCG, ROA recommends much better views. Moreover,
view selection is typically an off-line process, thus we view the running times as
acceptable.

48 CHAPTER 3. MATERIALIZED VIEW SELECTION FOR XQUERY

3.6.7 Experiment Conclusion

Our experiments have shown that the candidate sets CS1 and CS2 are of man-
ageable size for workloads of up to 100 queries. Working on CS1, we have demon-
strated that ROA and SCG scale up to 100 queries, whereas SOA and STT outgrow
the available memory for 50 queries. Moreover, ROA achieved better savings (up to
a factor of 8) and finds rewritings for more workload queries than its competitors.
ROA (and SCG-) recommended materialized views lead to efficient execution; in
our experiments materializing their views paid off starting from 2 workload runs.
ROA’s disadvantage is that being randomized, it needs to be stopped by a time-out,
and is significantly slower than SCG. However, in practice, ROA achieves signifi-
cant cost reductions (bigger than SCG) after relatively short times, of the order of
minutes in our experiments. This confirms its interest for recommending views on
complex XQuery workloads featuring many return nodes and value joins.

3.7 Related work

Our view selection approach bears similarities to those used in the relational
databases [ACN00, GM99b, HRU96]: breaking and joining views to find common
sub-expressions, and especially heavily relying on the (rewriter and) optimizer’s
recommended best plans, since a materialized view is only useful if the rewriting-
optimization pipeline identifies recognizes it as such. A recent survey on view
selection methods can be found in [MB12].

The complexity of XML data has lead to several index proposals, such as
the DataGuide [GW97], indexes for navigation in a tree [KBNK02], adaptive
path indexes of fixed length [QLO03] etc. Indexes can be seen as a special-
ized class of materialized views, based on which one only retrieves the iden-
tifiers of nodes that need to be retrieved from the store in order to return
the query results. In contrast, we focus on materialized views that can help
to completely answer complex queries, featuring multiple returning nodes and
value joins. In the space of XML view-based query rewriting, closest to our
work are the equivalent rewriting algorithms: for an XPath query using one
view [LP08, MS05, XO05, YLH03], and for XPath/XQuery using several views
[ABMP07, BOB+04, CDO08, CC10, DT03, MKVZ11, ODPC06, TYÖ+08]. In this
work, we built a view selection framework that exploits the recent multiple-view
equivalent rewriting algorithm of [MKVZ11], capable of handling tree patterns
with multiple return nodes and value joins. We are the first to study the auto-
mated selection of materialized views in this context.

Among the XML view recommender systems, the closest works consider one-
view XML query rewriting [MS05, TYT+09]. We discussed them in Section 3.5,
implemented adapted versions of their algorithms for our problem and show that
our ROA algorithm scales better than [TYT+09] which requires materializing an
exponential-size lattice, and is more effective than [MS05] since it exploits multi-
view, more sophisticated rewritings.

3.8. SUMMARY 49

[CF10] studies view selection to support the reconstruction an XML subtree
out of shredded data in relational tables. They show this is NP-hard, and present
a PTime approximate solution. The focus in [EAZZ09] is on recommending rela-
tional DB2 XMLTable 1 materialized views for XQuery workloads. Their candidate
views are inspired from the XPath snippets appearing in the for, where, let and
return XQuery clauses; a transformation close to our GENERALIZE is applied to ob-
tain more generic views. XQuery rewriting consists of translating XQuery into
SQL queries over the XMLTable views and taking advantage of the XPath rewrit-
ing (based on one XPath views) supported by DB2. Their selection algorithm is
a knapsack-style greedy, and experimented on a small workload of 10 queries.
They explore a more limited space of alternatives, since they do not split and
re-compose tree patterns through ID and structural joins, which ROA does ex-
tensively. Moreover, as we have shown, greedy algorithms (e.g., UDG) become
impractical for complex view and query languages and multiple-view rewritings,
since the repeated re-computation of benefit (through rewriting) takes prohibitive
time.

3.8 Summary

In this chapter, we considered the selection of materialized views for an XQuery
dialect consisting of joined tree patterns, and assuming a rich algebraic rewriting
framework capable of value and structural joins, XPath navigation etc. We for-
malized the space of candidates which is extremely large and showed how to
efficiently prune it. We have modeled the view selection problem as a state op-
timization problem and devised ROA, a heuristic algorithm that efficiently visits
part of the search space of sets of candidate views. Finally, we have demonstrated
that ROA scales easily up to 100 queries, whereas related works could scale up to
50. Moreover, ROA achieved better savings and finds rewritings for more workload
queries than its competitors. This confirmed the interest of ROA for recommend-
ing views on complex XQuery workloads featuring many return nodes and value
joins.

Acknowledgements We would like to thank Konstantinos Karanasos for his valu-
able help, comments and suggestions, Federico Ulliana for his input and advice
and Julien Leblay for his proofreading and comments. This work was partially
supported by the CODEX (ANR 08-DEFIS-004) and DataBridges (ANR 11-EITS-
003) projects.

1. http://publib.boulder.ibm.com/infocenter/db2luw/v9/

Chapter 4

Distributed View-based Web Data
Dissemination

The growing volumes of XML data sources on the Web or produced by enter-
prises, organizations etc. raise many performance challenges for data manage-
ment applications. In this chapter, we are concerned with the distributed, peer-to-
peer management of large corpora of XML documents, based on distributed hash
table (or DHT, in short) overlay networks. We present ViP2P (standing for Views in
Peer-to-Peer), a distributed platform for sharing XML documents based on a struc-
tured P2P network infrastructure (DHT). At the core of ViP2P stand distributed
materialized XML views, defined by arbitrary XML queries, filled in with data pub-
lished anywhere in the network, and exploited to efficiently answer queries issued
by any network peer. ViP2P allows user queries to be evaluated over XML docu-
ments published by peers in two modes. First, a long-running subscription mode,
when a query can be registered in the system and receive answers incrementally
when and if published data matches the query. Second, queries can also be asked
in an ad-hoc, snapshot mode, where results are required immediately and must be
computed based on the results of other long-running, subscription queries. ViP2P
innovates over other similar DHT-based XML sharing platforms by using a very ex-
pressive structured XML query language. This expressivity leads to a very flexible
distribution of XML content in the ViP2P network, and to efficient snapshot query
execution. ViP2P has been tested in real deployments of hundreds of machines.
We present the platform architecture, its internal algorithms, and demonstrate its
efficiency and scalability through a set of experiments. Our experimental results
outgrow by orders of magnitude similar competitor systems in terms of data vol-
umes, network size and data dissemination throughput.

ViP2P has been the main subject of previous publications and a thesis [Zou09].
This thesis has mainly focused on communication protocols and optimizations of
central parts of the ViP2P platform. Moreover, an extensive validation and exper-
imentation of the platform has been performed. The results of these efforts have
been published in a paper [KKMZ12] and a research report [KKMZ11]. To make
this thesis self-contained, we provide a complete description of the architecture

51

52 CHAPTER 4. DISTRIBUTED VIEW-BASED DATA DISSEMINATION

and design of ViP2P.

4.1 Motivation and Outline

The volumes of data sources available in the form of XML documents has ex-
ploded since the W3C’s 1998 standard, and so have the languages, tools and tech-
niques for efficiently processing XML data. The interest of distribution in this
context is twofold. First, a distributed storage and processing network can accom-
modate data volumes going far beyond the capacity of a single computer. Second,
as organizations and individuals interact more and more, sharing and consuming
one another’s information flows, it is often the case that (XML) data sources are
produced independently by several distributed sources [ÖV11]. The set of pro-
ducers and consumers of data related to a specific topic, e.g., IT journals, blogs
and online bulletins, is not only distributed, but also dynamic: sources may join or
leave the system, the set of information consumers or their topics of interest may
also change in time etc. Thus, we are interested in the large-scale management
of distributed XML data in a peer-to-peer (P2P) setting. To provide users with pre-
cise, detailed and complete answers to their requests for information, we adopt a
database-style approach where such requests are formulated by means of a struc-
tured query language, and the system must return complete results. That is, if
somewhere in the distributed peer network, an answer to a given query exists, the
system will find it and include it in the query result. To achieve this, our goal is to
build a P2P XML data management platform based on a distributed hash table (or
DHT, in short [DZD+03]).

In this setting, users may formulate two kinds of information requests. First,
they may want to subscribe to interesting data anywhere in the network, and pub-
lished before or after the subscription is recorded in the system. Our goal is to
persist the subscriptions and ensure that results are eventually returned as soon as
possible following the publication of a matching data source. This is in the spirit,
e.g., of RSS feeds, but extended to a distributed network where the source from
which interesting data will come is not a priori known. Second, users may formu-
late ad-hoc (snapshot) queries, by which they just seek to obtain as fast as possible
the results which have already been published in the network.

The challenges raised by a DHT-based XML data management platform are:
— building a distributed resource catalog, enabling client producers and con-

sumers to “meet” in the virtual information sharing space; such a catalog is
needed both for subscription and ad-hoc queries,

— efficiently distributing the data of the network to the consumers that have
subscribed to it and

— providing efficient distributed query evaluation algorithms for answering ad-
hoc queries fast.

In this chapter, we present ViP2P, standing for Views in Peer-to-Peer, a dis-
tributed P2P platform for sharing Web data, and in particular XML data. ViP2P

4.1. MOTIVATION AND OUTLINE 53

is built on top of a structured P2P network infrastructure, and it allows each peer
in the network to share data with all the other peers. Data sharing in ViP2P is
twofold. First, each network peer can ask long-running queries which are treated
as subscriptions, that is, they receive results if and when a document published
in the system matches such queries. Second, once results are stored for such a
subscription, they are treated as materialized views based on which subsequent
ad-hoc queries can be processed with snapshot semantics, i.e., based only on the
data already published in the network. Given such an ad-hoc query, a ViP2P peer
looks up the ViP2P network for relevant materialized views, runs an algorithm for
equivalently rewriting the query, identifies and evaluates a distributed query eval-
uation plan which, based on the views, computes exactly the results of the query
on the data published in the system prior to the query. ViP2P thus fills two kinds
of needs: (i) disseminating information in a timely fashion to subscriber peers
and (ii) re-using pre-computed results to process ad-hoc queries efficiently on the
existing data only.

A critical issue when deploying XML data management applications on a DHT
is the division of tasks between the DHT and the upper layers. The DHT software
running on each machine allows peers to remain logically connected to each other
and to look up data based on search keys: a small set of simple, light-weight oper-
ations. In contrast, powerful XML data management requires complex languages
(such as the W3C’s XPath and XQuery standards), and scalable algorithms to cope
with complex processing and large data transfers (known to raise performance
issues in any distributed data management setting).

Experience with our previous DHT-based XML data management platform
KadoP [AMP+08] has taught us to load the DHT layer as little as possible, and
keep the heavy-weight query processing operations in the data management layer
and outside the DHT. This has enabled us to build and efficiently deploy a system
of important size (70.000 lines of Java code), which, as we show, scales on up
to 250 computers in a WAN, and hundreds of GBs of XML data. ViP2P improves
over the state of the art in DHT-based XML data management, since: (i) it is one
of the very few systems actually implemented (together with [AMP+08, RM09b],
and opposed to prototypes built on DHT simulators), (ii) is shown to scale on
data volumes that are orders of magnitude beyond the cited competitor systems
and (iii) has the most expressive XML query language, and the most advanced
capabilities of re-using previously stored XML results, among all similar existing
platforms [AMP+08, BC06, BMCJ04, GWJD03, KP05, LP08, RM09b].

ViP2P is part of a family of systems aiming at efficient management of XML data
in structured peer-to-peer networks [AMP+08, BC06, BMCJ04, GWJD03, KP05,
LP08, RM09b, RM09a]. The contributions of this work, with respect to the existing
systems, are as follows:

— We present a complete architecture for query evaluation, both in continuous
(subscription) and in snapshot mode. This architecture enables the efficient
dissemination of answers to tree pattern queries (expressed in an XQuery
dialect) to peers which are interested in them, regardless of the relative

54 CHAPTER 4. DISTRIBUTED VIEW-BASED DATA DISSEMINATION

order in time between the data and the subscription publication. As in
[LP08], it also allows to efficiently answer queries in snapshot mode, based
on the content of the existing views materialized in the network, but using
more expressive views, queries and rewritings.

— We have fully implemented our architecture (about 250 classes and 70.000
lines of Java code), on top of the FreePastry [Fre] P2P infrastructure. We
present a comprehensive set of experiments performed in a WAN, showing that
(i) the performance of a fully deployed large-scale distributed system (and
in particular a DHT-based XML management platform) is determined by
many parameters, beyond the network size and latency which can be set in
typical P2P network simulators and (ii) the ViP2P architecture scales to sev-
eral hundreds of peers and hundreds of GBs of XML data, both unattained
in previous works.

This chapter is organized as follows: Section 4.2 surveys the state of the art in
managing XML data in DHT networks and Section 4.3 introduces the ViP2P archi-
tecture via an example and describes its main modules. Section 4.4 concentrates
on the materialization, indexing and look-up of materialized views, at the core of
the platform. Finally, in Section 4.5, we present a set of experiments analyzing the
performance of ViP2P data management in a variety of settings and demonstrating
its scalability, then we conclude.

4.2 State of the Art

In this section we present the current state of the art in XML data management
over P2P networks. In Section 4.2.1 we focus on the differences of structured
and unstructured P2P networks and the reasons behind our choice to use a struc-
tured P2P network for building our platform. In Section 4.2.2 we present our
closest competitor works focusing on the management of XML data over struc-
tured DHT networks. Section 4.2.3 stresses the challenges of distributed XML
data management in a real, deployed platform as opposed to simulations. Finally,
in Section 4.2.4, we present earlier publications of the ViP2P platform.

4.2.1 P2P Data Sharing Networks

Peer-to-peer content sharing platforms can be broadly classified in two groups.
Unstructured peer-to-peer networks allow arbitrary connections among peers, that
is, each peer may be connected to (or aware of the existence of) one or more net-
work peers of its choice. Such network structure typically mimics some conceptual
proximity between peers interested, for instance, in similar topics. Structured peer
networks, on the other hand, impose the set of connections among peers. A sur-
vey of (structured and unstructured) P2P XML sharing platforms reflects the state
of the art and open issues as of 2005 [KP05] and a more recent survey of XML
document indexing and retrieval in P2P networks can be found in [Abe11].

4.2. STATE OF THE ART 55

The different network structures impact the way in which searches (or queries)
can be answered in the network. Thus, in unstructured networks, queries are for-
warded from each peer to its set of known peers (or neighbors) and answers are
computed gradually as the query reaches more and more peers. For instance, in
[SMGC05] peers are logically organized into clusters that are formed on a doc-
ument schema-similarity basis. The superpeers of the network are organized to
form a tree, where each superpeer hosts schema information about its children.
When a query arrives it is forwarded to the superpeers. Every superpeer performs
location assignment: it examines the schemas of the documents of its children to
detect which peers could possibly contribute results to the query. After the con-
tributing peers have been located, the peer that originally posed the query builds
a location aware algebraic plan and ships the corresponding subqueries to their
respective peers. The results are then retrieved from each peer and the original
query is evaluated by performing operations such as joins over the subquery re-
sults.

It is easy to see that if query answers reside on a peer very far (in terms of
peer connections) from the peer where the query originated, this may lead to
numerous messages and a long query response time. To improve the precision,
performance and recall of query answering in this context, many approaches have
been proposed, from the earliest [YGM03] to the very recent [DLAV10], to name
just a few.

In contrast, structured networks (and their best-known representatives, dis-
tributed hash tables or DHTs, in short [DZD+03]) provide a simple distributed
index functionality implemented jointly by all the peers. The simplest DHT in-
terface provides put(key, value) and get(key) operations allowing the storage of
(key, value) pairs distributed over all the network peers. More advanced DHT
structures also allow range searches of the form get(key range), such as Baton
[JOT+06, JOV05] or P2PRing [CLM+04, CLM+07]. In a DHT, to answer a get re-
quest, a bounded number of messages are exchanged in the network, typically in
O(log2(N)), where N is the number of network peers.

In this work, we consider the setting of a structured network, based on a DHT,
and design an efficient platform for XML query processing in large scale networks,
based on P2P XML materialized views. The main difference between most of the
existing platforms and ViP2P is that our system addresses the whole processing
chain involved in evaluating queries, as opposed to only locating the interesting
documents and shipping the query to those peers for evaluation. The latter ap-
proach may, in some cases, require numerous messages at query evaluation time
and possibly increased response times. ViP2P, in contrast, considers the complete
chain of query processing based on materialized views incrementally built in the
network. This enables answering queries by contacting only a few peers and pos-
sibly re-using complex pre-computed results, stored in the views.

56 CHAPTER 4. DISTRIBUTED VIEW-BASED DATA DISSEMINATION

4.2.2 XML Data Management Based on DHTs

The first DHT-based platform for XML data management was [GWJD03]. This
work proposed a framework for indexing XML documents, based on the parent-
child element paths appearing in the document. Processing a query involves (i) ex-
tracting from the query a set of paths which could serve as lookup keys, (ii) ob-
taining via get calls the IDs of all documents matching the paths, (iii) shipping
the query to all the peers holding such documents and (iv) retrieving the results
at the query peer. The approach carries some imprecision in the case of queries
featuring the descendant axis (//) or tree branches. For instance, the query /a[b]/c
could be forwarded to documents in which the paths /a/b and /a/c occur, but the
tree pattern /a[b]/c does not occur. A very similar approach to DHT-based XML
indexing by parent-child paths is taken in [SHA05].

The above discussion illustrates a common aspect in DHT-based content man-
agement platforms: imprecision in the indexing method leads to more peers being
contacted to process a given query. A previous work on managing relational data
based on DHTs [LHH+04] has shown that intensive messaging at query time may
seriously limit scaling. Therefore, index precision is generally a desirable feature.

The work described in [BC06, BMCJ04] considers the setting where XML docu-
ments are divided in fragments distributed among several peers. Each fragment is
assigned as identifier the parent-child label path going from the document root to
the root of the fragment, and subsequently, fragments are indexed in the DHT by
their identifiers. The system uses a particular DHT which can handle prefix queries,
and thus allows locating XML fragments for which a prefix of the path from the
root to the fragment is known. Processing linear queries using only the child axis
is simple, however, simple queries using the descendant axis, such as the query
//a, need to be forwarded to all the network peers.

The KadoP system [AMP+08] indexes XML documents at fine granularity.
Thus, for any element name a, a network peer is in charge of storing the iden-
tifiers (or IDs, in short) of all a-labeled elements from all the documents in the
network. The IDs reflect the position of the elements in the respective docu-
ments. Therefore, any tree pattern query can be answered by retrieving the list
of IDs corresponding to each tree pattern node, and combining these lists via a
holistic twig join [BKS02]. This indexing model has very high precision, since
the output of the holistic twig join includes exactly the documents matching the
query. However, the index is much more voluminous than in previous proposals
[BC06, BMCJ04, GWJD03, SHA05], highlighting the severe limitations in terms of
volume of the (key, value) pairs of the DHT index. Several optimizations in the in-
dex structure were introduced in [AMP+08], based on which the KadoP platform
was tested on hundreds of peers and 1GB of data.

More recently, the psiX system [RM09a, RM09b] proposed an XML indexing
scheme based on document summaries, corresponding to the backward simula-
tion image of the XML documents (if a DTD is available, summaries can also be
built based on the DTD). An algebraic signature is associated to each summary and
to each query. When a query arrives, the algebraic query signature is used to look

4.2. STATE OF THE ART 57

up in a holistic fashion all document signatures matching the query. The precision
of this indexing scheme improves over KadoP [AMP+08] by a better treatment
of wildcard (∗) nodes, which KadoP ignores for the most part of query process-
ing. From the matching summaries, one can identify the concrete corresponding
documents, and then push query evaluation to the peers hosting the documents.
The approach is implemented over the Chord DHT and shown to be effective by
experiments on up to 11 peers in the PlanetLab network.

The main difference between the works described in [GWJD03, RM09a,
RM09b, SHA05] and our work lies in the approach taken for query processing.
These works, of which psiX [RM09b] can be considered the most advanced, are
only concerned with locating the documents relevant for a query. In contrast,
[BC06, BMCJ04], KadoP [AMP+08] and the ViP2P platform presented here ad-
dress the P2P XML query processing problem as a whole. They re-distribute data
in the P2P network in order to prepare for the evaluation of future queries. KadoP
distributes a tag index over the peers independently of the data and the queries,
which can be seen as a “one size fits all” approach. ViP2P allows individual peers
to choose the particular queries of interest for them, expressed in a rich tree pat-
tern dialect (or, equivalently, a useful XQuery subset) and then allows exploiting
the stored results of such queries as views for rewriting future queries. An on-
going development of ViP2P [CRKMR10] focuses on automatically choosing the
views to materialize on each peer in order to improve observed query processing
performance. Thus, going beyond the problem of locating relevant documents,
ViP2P aims at making the most out of the existing network storage and processing
capacity in order to evaluate queries most efficiently to the peers that need them.

Closer in spirit to our work is the cooperative XPath caching approach described
in [LP08], where peers can store results of a (peer-chosen or system-imposed)
XPath query. The definitions of these stored queries (or views) are indexed in
the network, enabling subsequent queries to be rewritten and answered based on
these views. ViP2P is more general, since (i) our view and query language is an
XQuery dialect with many returning nodes, as opposed to the simple XPath subset
in [LP08] and (ii) our approach allows to rewrite a query based on several views,
whereas [LP08] can only exploit one view for one query.

DHT-based XML indexing methods [AMP+08, BC06, BMCJ04, GWJD03, RM09a,
RM09b, SHA05] are complete, i.e., for each query, based on the index, all rele-
vant answers can be computed and returned. In ViP2P and [LP08], peer-chosen
views replace the compulsory index fragments assigned by the network to each
peer. Thus, it is possible that some queries cannot be processed due to the lack
of appropriate views. Our focus in ViP2P is on efficiently building and exploiting
pre-computed query results under the form of materialized views. To guaran-
tee completeness, our approach can be coupled with an efficient and compact
document-level index, such as psiX [RM09b], on which to fall back when no suit-
able views are found for a given query.

We conclude our analysis by considering the granularity or level of detail used
to index XML, i.e., the granularity of the keys inserted in the DHT. Element la-

58 CHAPTER 4. DISTRIBUTED VIEW-BASED DATA DISSEMINATION

bels (or label paths, or document summaries) have been often used. However,
this does not allow efficiently locating documents which satisfy specific value or
keyword search conditions, such as e.g., //item[price=$45] or //item[contains(.,’cam
era’)]. Indexing by keywords or text nodes increases index precision but also sig-
nificantly increases the index size, since there are many more keywords in an
XML document than distinct tags. Therefore, the approaches of [BC06, BMCJ04,
GWJD03, RM09a, RM09b, SHA05] cannot be easily extended to support keyword
search and preserve their scalability. A value summary framework is proposed in
[GWJD03] to index element values by trading off precision for index space. KadoP
[AMP+08] indexes all keywords just like element labels, and proposes index-level
optimization techniques to cope with important scale-related problems. ViP2P
allows keyword and value conditions both in the materialized views and in the
queries.

4.2.3 Managing XML on a DHT: Platforms vs. Simulations

Developing distributed systems, and in particular a P2P platform, requires sig-
nificant efforts. This may be a reason why many previous works in this area vali-
date their techniques based on simulated peer networks, where a single computer
runs an analytical model configured to simulate a given network size. Our INRIA
team has invested significant manpower (of the order of 70 man ×month by now)
developing the KadoP and then the ViP2P platforms. Our effort has taught us that
many architecture and engineering problems arise due to the mismatch between
the initial DHT goals (maintaining large dynamic networks connected and provid-
ing minimal messaging), and the data-intensive operations required by indexing,
storing, and querying large volumes of XML data. We have addressed these prob-
lems in ViP2P by careful architecture and engineering, and report in this chapter
experiments at a scale (in peers deployed over a WAN, and in data size) unattained
so far by any other platform. Thus, KadoP [AMP+08] scales up to 1 GB of data over
50 computers peers, psiX [RM09b] used 262 MBs of data and 11 computers, and
in this chapter we report on sharing up 160 GB of data over up to 250 computers
(in all cases, the computers were distributed in a WAN).

4.2.4 Previous Publications on ViP2P

A first version of the platform was described in an informal setting (no proceed-
ings) in an international workshop [MZ09b] and a national conference [MZ09a].
These works used a more restricted query language than we consider here,
and described early experiments on a platform which has been much improved
since. Two ViP2P applications have lead to demonstrations: P2P management of
RDF annotations on XML documents [KZ10] and adaptive content redistribution
[CRKMR10]. The details of view-based query rewriting in ViP2P are described in
a separate paper [MKVZ11]. They can be seen as orthogonal to the architecture
and performance issues described here.

4.3. VIP2P PLATFORM OVERVIEW 59

4.3 ViP2P Platform Overview

XML data flows in ViP2P can be summarized as follows. XML documents are
published independently and autonomously by any peer. Peers can also formulate
subscriptions, or long-running queries, potentially matching documents published
before, or after the subscriptions. The results of each subscription query are stored
at the respective peer, and the definition of the query is indexed in the peer net-
work. Finally, peers can ask ad-hoc queries, which are answered in a snapshot
fashion (based on the data available in the network so far) by exploiting the exist-
ing subscriptions, which can be seen as materialized views. We detail the overall
process via an example in Section 4.3.1. We then proceed to describe the ViP2P
modules implementing it in Section 4.3.2.

4.3.1 ViP2P by Example

A sample ViP2P instance over six peers is depicted in Figure 4.1 and we use it
to base our presentation of the operations which can be carried in each peer. In
the Figure, XML documents are denoted by triangles, whereas views are denoted
by tables, hinting to the fact that they contain sets of tuples. More details on
views and view semantics are provided in Section 4.4, but they are not required to
follow the discussion here. For ease of explanation, we make the following naming
conventions for the remainder of this chapter:

— Publisher is a peer which publishes an XML document
— Consumer is a peer which defines a subscription and stores its results (or,

equivalently, the respective materialized view)
— Query peer is a peer which poses an ad-hoc query (to be evaluated over the

complete ViP2P network).
Clearly, a peer can play any subset of these roles simultaneously or successively.

4.3.1.1 View Publication

A ViP2P view is a long-running subscription query that any peer can freely de-
fine. The definition (i.e., the actual query) of each newly created view is indexed
in the DHT network. For instance, assume peer p2 in Figure 4.1 publishes the
view v1, defined by the XPath query //bibliography//book[contains(.,′Databases′)].
The view requires all the books items from a bibliography containing the word
‘Databases’. ViP2P indexes v1 by inserting in the DHT the following three (key,
value) pairs: (bibliography, v1@p2), (book, v1@p2) and (′Databases′, v1@p2). Here,
v1@p2 encapsulates the structured query defining v1, and a pointer to the concrete
database at peer p2 where v1 data is stored. As will be shown below, all exist-
ing and future documents that can affect v1, push the corresponding data to its
database.

Peers look up views in the DHT in two situations: when publishing documents,
and when issuing ad-hoc queries. We detail this below.

60 CHAPTER 4. DISTRIBUTED VIEW-BASED DATA DISSEMINATION

Figure 4.1: System overview.

4.3.1.2 Document Publication

When publishing a document, each peer is in charge of identifying the views
within the whole network to which its document may contribute. For instance, in
Figure 4.1 (step a), peer p3 publishes the document d1 (depicted in Figure 4.2).
Document d1 contains data matching the view v1 as it contains the element names
bibliography and book, as well as the word ′Databases′. Peer p3 extracts from
d1 all distinct element names and all keywords. For each such element name or
keyword k, p3 looks up in the DHT for view definitions associated to k, and, thus,
learns about v1 (step b). In the publication example above, p3 extracts from d1
the results matching v1; from now on, we will use the notation v1(d1) to designate
such results. Peer p3 sends v1(d1) to p2 (step c), which adds them to the database
storing v1 data.

A separate mechanism is needed for a view, say vx, published after d1 but
having results in d1. One possibility would be for the peer publishing vx to look
up, among all the network documents, for those that could contain terms from
vx and require them to contribute vx results. The drawback is that this requires
indexing all documents on all terms, which may be wasteful since a large part of
published content may not be looked up frequently, or not at all.

Instead, ViP2P associates to each view an interval timestamp, corresponding to
a time interval during which the view was published. Each peer having published
a document d must check the DHT for views published after d. To that effect,
each peer performs regular lookups using as key, the time interval which has just
passed. Thus, it retrieves the definitions of all the views published during that
interval and contributes its data if it hasn’t done it already.

4.3. VIP2P PLATFORM OVERVIEW 61

bibliography

book

title

Found. of
Databases

author

name

first

Serge

last

Abiteboul

year

1995

. . . paper

title

AXML
project

author

name

first

Serge

last

Abiteboul

year

2008

Figure 4.2: Sample XML document d1.

4.3.1.3 Ad-hoc Query Answering

ViP2P peers may pose ad-hoc queries, which must be evaluated immediately
(from the previously published data). To evaluate such queries, a ViP2P peer looks
up in the network for views which may be used to answer it. For instance, assume
the query q = //bibliography//book[contains(.,′Databases′)]//author is issued at
peer p5 (step 1, in Figure 4.1). To process q, p5 looks up the keys bibliography, book,
′Databases′ and author in the DHT, and retrieves a set of view definitions (step 2),
including that of v1. Observe that q can be rewritten as v1//author; therefore, p5
can answer q just by retrieving and extracting q’s results out of v1. A distinguishing
feature of ViP2P (step 3) is its ability to combine several materialized views in
order to rewrite a query. A query rewriting (a logical plan based on some views) is
translated by the ViP2P query optimizer into a distributed physical plan, specifying
which operators will be used and in which peers they will be executed. The ViP2P
optimizer is responsible for selecting the most efficient physical plan, as this choice
has a significant impact in the query execution time, especially in a distributed
setting such as ours where network communication plays an important role. The
execution of the physical plan may require the cooperation of various peers, and
leads to results being sent at the query peer (step 4).

4.3.2 ViP2P Peer Architecture

We now present the main modules of ViP2P peers as well as their functionali-
ties and interaction, outlined in Figure 4.3. The ViP2P Core box includes the main
modules, whereas boxes located outside ViP2P Core are independent external sub-
systems that interact with ViP2P.

62 CHAPTER 4. DISTRIBUTED VIEW-BASED DATA DISSEMINATION

Figure 4.3: Basic architecture of a ViP2P peer.

4.3.2.1 External Subsystems

FreePastry DHT [Fre] provides the underlying DHT layer on which ViP2P is built.
FreePastry is an open-source implementation of Pastry [RD01], an efficient, self-
organizing and fault-tolerant overlay network. Pastry provides efficient request
routing, deterministic object location, and load balancing. ViP2P nodes index and
lookup view definitions on FreePastry’s DHT during the view materialization and
query processing.

Java RMI is used for all large data transfers. Previous work [AMP+08] has shown
that the DHT communication primitives were not suitable for such transfers, since
(i) the DHT get and put operations are blocking, that is, data sent via the DHT
becomes available at the receiver only when it has been completely received and
(ii) message queues in the DHTs overflow easily even after tuning, in which case
the DHT peers re-send them, which further clogs the DHT communication pipes.
Beyond the degradation of performance, such message overflows are annoying
because a peer that is too busy trying to re-send data, may skip sending the regular
“ping” to his neighbors to signal that it is still alive. Then, the neighbors suspect
the peer is down, this triggers further loss of messages etc.

For all these reasons, we have decided to split inter-peer communication in
two categories. The DHT is used to efficiently send small messages, typically to
index and look up view definitions. We use RMI (which we were able to fine-tune
by writing efficient custom serialization/de-serialization methods, properly con-

4.3. VIP2P PLATFORM OVERVIEW 63

trolling concurrency at the send and receiver side etc.) to send larger messages
containing view tuples, when views are materialized and queried. We also applied
specific techniques to reduce the space occupancy of transmitting tuples. Thus, a
document ID (or URI) often appears many times in a view, as many times as there
are view tuples obtained from that document. Since the URIs are quite large, they
make up an important part of the document data. We use dictionary-based encod-
ing of the document URIs, i.e., the tuple sender dynamically builds a dictionary
of all document URIs and sends partial dictionaries with each tuple packet, to en-
able decoding on the receiver side. One could perhaps improve performance even
further by coding data-intensive communications at a lower level (e.g. using plain
sockets), but the improvements attained by our way of utilizing RMI are already
very significant.

BerkeleyDB Within each peer, view tuples are efficiently stored into a native store
that we built using the Berkeley DB [BDB] library. It provides the routines to
store, retrieve and sort entries, while guaranteeing ACID transactions when view
data are written and read concurrently.

The GUI facilitates the control and inspection of each peer, enabling users to pub-
lish views and/or pose queries. Screenshots of the ViP2P GUI, along with other
information, can be found on the ViP2P website 1.

We now move to describing the core modules.

4.3.2.2 Document Management Module

This module is responsible for looking up for views to which the peer’s docu-
ments may contribute, extracting the data from the documents and sending it to
the respective consumers.

View Definition Lookup When a new document is published by a peer, the view
lookup module at this peer first, looks up in the DHT the definitions of the views to
which the document may contribute data, and then passes these views definitions
to the view data extraction module.

View Data Extraction Given a list of view definitions, the view data extraction
module at a publisher peer extracts from the document the tuples matching each
view, and ships them, in a parallel fashion, to the different consumers. The view
data extractor is capable of simultaneously matching several views on a given doc-
ument. Thus, the corresponding tuples are extracted during a single traversal of
the document. The extractor maintains a thread pool for setting up RMI com-
munications for shipping tuples to the consumers. As our experiments show in
Section 4.5.3, this parallel tuple sending significantly reduces the time needed to
materialize the views.

1. http://vip2p.saclay.inria.fr/

64 CHAPTER 4. DISTRIBUTED VIEW-BASED DATA DISSEMINATION

view holdertuple extractor

tuples ready tuple-send request
enqueue requestbusy

sleep dequeue requestready

wake up send tuples

store tuples

Figure 4.4: Tuple-send/receive protocol use case between a tuple–sender and a
view holder.

4.3.2.3 View Management Module

This module handles view indexing and materialization.

View Indexing This module makes visible to all network peers the definitions of
all the views declared in the ViP2P network (of course without broadcasting them,
since most peers are typically not interested in all views). When a new view is
defined, the indexer inserts in the DHT (key,value) pairs used to describe it, based
on one of the indexing strategies that we will describe in Section 4.4.1.

View Materialization The view materialization module receives tuples from re-
mote publishers and stores them in the respective BerkeleyDB database. In a large
scale, real-world scenario, thousands of documents might be contributing data to
a single view. To avoid overload on its incoming data transfers, this module im-
plements a back-pressure tuple-send/receive protocol which informs the publisher
when the incoming tuple buffer is full at the consumer side. Thus, a publisher
may have to wait until the consumer is ready to accept the tuples. This makes the
most out of the available publisher-to-consumer bandwidth, all the while avoiding
costly re-transmissions due to messages lost from overflowing queues.

Figure 4.4 traces the tuple-send/receive protocol between a tuple extractor
and a view holder. First the tuple extractor extracts the tuples and keeps them in
memory being ready to ship them to the view holder. After that, it sends a tuple-
send request to the view holder. In this example, the view holder is busy storing
tuples (possibly sent by other tuple extractors), thus it enqueues the request and
responds to the tuple extractor with a “busy” response. When the view holder is
ready to accept the new set of tuples, it dequeues the request and informs the tuple
extractor (via a “ready” message). Then, the tuple extractor ships the new tuples to
the view holder, who finally stores them in the Berkeley database of the respective
view. The view holder can serve multiple tuple-send requests concurrently. Our
experiments (Section 4.5.3) show how the concurrency can affect the time needed
for a set of views to be materialized.

4.3. VIP2P PLATFORM OVERVIEW 65

4.3.2.4 Query Management Module

A sequence of steps are required to evaluate queries, each performed by a
dedicated module, as follows.

View Lookup This module, given a query, performs a lookup in the DHT network
retrieving the view definitions that can be used to rewrite the query.

Query Rewriting This module takes a given ad-hoc query and a set of available
view definitions and produces a logical rewriting plan which, evaluated on some
views, produces exactly the results required by the query.

Query Optimization This module receives as input a logical plan which is output
by the query rewriting module and translates it to an optimized physical plan.
The optimization takes place both at the logical (join reordering, push selections
and projections etc.) and physical (dictating the exact flow of data during query
execution, selection of appropriate physical operators etc) level.

Query Execution This module provides a set of physical operators which can be
executed by any ViP2P peer, implementing the standard iterator-based execution
model [Gra90]. Since ViP2P is a distributed application, operators can be de-
ployed to peers and executed in a remote manner. The query optimization module
is the one to decide the parts of a physical plan that every peer executes.

Data exchange operators are an essential part of a distributed execution plan.
To that end, ViP2P implements two data exchange operators: the Send and Re-
ceive operators that permit data exchange across peers. They are always used in
pairs: whenever a data sender peer executes a Send operator, the data receiver
executes its respective Receive operator. Send and Receive are implemented using
asynchronous communication buffers (tuples are not sent through the network
one by one but in buckets of specified size) and data is transferred via RMI. To
reduce the transferred data volumes, document URIs (present in each view tu-
ple to identify the document the tuple was extracted from) are compressed using
a dictionary by the Send and decompressed by the Receive as described in Sec-
tion 4.3.2.1.

ViP2P implements the typical Selection, Projection, Hash Join, Nested Loop Join
and Merge Join operators. Moreover, it uses the XML specific operators Holis-
tic Twig Join [BKS02], Structural Ancestor Join and Structural Descendant Join
[AKJP+02] performing structural joins based on the structural identifiers (IDs)
of the incoming tuples. The Navigation operator corresponds to the logical navi-
gation operator, described in Section 2.2.2. Two sorting operators are available:
an in-memory sort operator Memory Sort, and an external memory sort based on
BerkeleyDB.

66 CHAPTER 4. DISTRIBUTED VIEW-BASED DATA DISSEMINATION

4.4 ViP2P View Management

Materialized views stand at the heart of data sharing in ViP2P. sections 4.4.1
and 4.4.2 show how view definitions are indexed and looked up in the DHT in
order to be retrieved for view materialization and query rewriting, respectively.

4.4.1 View Definition Indexing and Lookup for View Material-
ization

This section describes how published data and views “meet”, i.e., how ViP2P
ensures that for each view v, the data obtained by evaluating v over d, denoted
v(d), is eventually computed and stored at the peer having defined v. Two cases
arise, depending on the publication order of v and d.

View Published Before the Document In this case, the view definitions are in-
dexed using as keys all the labels (node names and words) of the view. Figure 4.6
shows eight views. To index v1, ViP2P issues the calls put(book, v1) and put(title, v1)
to the DHT. Observe that these calls index the definition of v1 (not its data) on the
keys book and title. Similarly, v2 is indexed on the keys book, author and last,
v3 using the keys paper, author and last etc. When the document in Figure 4.2 is
published, get calls are issued with the keys bibliography, book, paper, title, author,
year, Found. of Databases and all the other labels and keywords of the document.
The result is a superset of view definitions of the views that the document might
affect. In this case the views v1 to v8 are retrieved.

ti ti+1 ti+2 ti+3 ti+4 ti+5

d1 v1 v2 v3 d2

Figure 4.5: Sample timeline of view and document publication.

View Published After the Document ViP2P ensures that views are kept up to date
(providing some time for the data to circulate across the network). Thus, when a
view is published, it should be filled in with data from all the previously published
documents matching the view. To achieve this, ViP2P associates to each view an
interval timestamp, corresponding to a time interval during which the view was
published, and indexes each view definition in the DHT using as key the corre-
sponding timestamp. As illustrated in Figure 4.5, v1 belongs to (was published in)
the interval (ti+1, ti+2], v2 to the interval (ti+2, ti+3] and v3 to (ti+3, ti+4].

Each peer having published a document d must check the DHT for views that
may have appeared after d. To that effect, each peer performs regular lookups
using as key the time interval that has just finished. This retrieves the definitions
of all views published during that interval. The peer then checks, for each of its
documents, if the document has already contributed to that view (this information

4.4. VIP2P VIEW MANAGEMENT 67

v1

bookID

titleval
v2

bookID

author

lastval

v3

paperID

author

lastval

v4

paperID

author

firstval

v5

book

titleval author

v6

book

titlevalauthorval

v7

paper

authorvalyearval

v8

bookID

author

paper

author yearval

q1

book

titleval author

lastval

q2

book

author yearval

q3

book

titleval author

paper

author year

2008

Figure 4.6: Sample views and queries.

is stored locally at the peer). If this is not the case, the peer checks if that document
holds any data for these views and if so, extracts and sends the corresponding data
to the view holder. In Figure 4.5, document d1 arrives during the (ti, ti+1] time
interval. With the help of the timestamped view index, we discover the views v1,
v2 and v3 which arrived later. Notice also that document d2 is published after the
views and thus is treated according to the first case above.

4.4.2 View Definition Indexing and Lookup for Query Rewrit-
ing

View definitions are also indexed in order to find views that may be used to
rewrite a given query. In this context, a given algorithm for extracting (key, value)
pairs out of a view definition is termed a view indexing strategy. For each such
strategy, a view lookup method is needed, in order to identify, given a query q,
(a superset of) the views which could be used to rewrite q. Many strategies can
be devised. We present four that we have implemented, together with the space
complexity of the view indexing strategy, and the number of lookups required by
the view lookup method. We also show that these strategies are complete, i.e.,
they retrieve at least all the views that could be embedded in q and, thus, could
potentially lead to q rewritings.

4.4.2.1 Label Indexing (LI)

In this strategy we index v by each v node label (either some element or at-
tribute name, or word). The number of (key, value) pairs thus obtained is in
O(|v|), where |v| the number of nodes of the view.

68 CHAPTER 4. DISTRIBUTED VIEW-BASED DATA DISSEMINATION

View Lookup for LI The lookup is performed by all node labels of q. The number
of lookups is Θ(|q|), where |q| is the number of nodes in the query. Figure 4.6
depicts some sample queries. The LI lookup keys for q1 are book, title, author and
last, retrieving all the views of Figure 4.6. Note that some of these cannot be used
to equivalently rewrite q1. For instance, v3 has data about papers, while q1 asks for
books. Similarly, LI indexing and lookup for q2 and q3 leads to retrieving all the
views. This shows that LI has many false positives.

LI Completeness If LI is not complete, then there exists a view v that can be used
to rewrite a query q, and v is not retrieved when searching by all q labels. It has
been shown [TYÖ+08] that in order for a view to appear in an equivalent rewriting
of a query, there must exist an embedding (homomorphism) from the view into
the query, which entails that some node labels must appear in both. If in our case
v and q have no common node label, this contradicts the hypothesis that v was
useful to rewrite q.

The LI strategy coincides with the view definition indexing for document-
driven lookup (described previously). An interesting variant can furthermore be
elaborated.

4.4.2.2 Return Label Indexing (RLI)

Here, we index v by the labels of all v nodes which project some attributes (at
most |v|). For instance, in Figure 4.6, the index keys for v1 are book and title, for
v2 they are book and last, for v3 paper and last etc. up to v8 which is indexed by
RLI on the keys book and year.

View Lookup for RLI The view definition lookup is the same as for LI (look up on
all query node labels). In Figure 4.6, the definitions of v1 − v3, and v5 − v8 will be
retrieved for q1. For q2, the definitions of v1, v2, v6, v7 and v8 will be retrieved. A
RLI lookup for q3 will retrieve v1−v8. Observe that RLI lead to less view definitions
retrieved than LI.

RLI Completeness Suppose that there is a view v which can be used to rewrite
a query q, yet the definition of v is not retrieved by RLI lookup. This means that
either (i) v does not store any attributes or (ii) the labels of v nodes that project
an attribute do not appear in q. (i) is not possible because a view that participates
to a rewriting should store at least an attribute and (ii) is also not possible since it
contradicts the existence of an embedding from v to q, required for v to be useful
in rewriting q.

4.4.2.3 Leaf Path Indexing (LPI)

Let LP (v) be the set of all the distinct root-to-leaf label paths of v. Here, a path
is just the sequence of labels encountered as one goes down from the root to the
node, and does not reflect the type of the edges. We index v using each element
of LP (v) as key. The number of (key, value) pairs thus obtained is in Θ(|LP (v)|).

4.5. EXPERIMENTAL RESULTS 69

Going back to Figure 4.6, v1 is indexed on the key book.title, v2 with the key
book.author.last etc. The view v8, composed of two tree patterns, is indexed using
the keys book.author, paper.author and paper.year.

View Lookup for LPI Let LP (q) be the set of all the distinct root-to-leaf label paths
of q. Let SP (q) be the set of all non-empty sub-paths of some path from LP (q), i.e.,
each path from SP (q) is obtained by erasing some labels from a path in LP (q). Use
each element in SP (q) as lookup key. For example, q1 of Figure 4.6 LPI lookup uses
the keys book.title, book, title, book.author.last, book.author, author.last, book.
last, book, author and last etc. Note that LPI lookup for q1 does not retrieve the
definitions of the views v3, v4, and v7, which previous strategies retrieved, although
they are not useful to rewrite q1. LPI can still have some false positives though: a
lookup for q2 retrieves v5, v6 and v8, none of which can be used to rewrite q2 (in
this example, q2 simply has no rewriting). The lookup for q3 retrieved the views
v1, v5, v6, v7 and v8. The filtering is very good in this case because among these
only v5 can not be used to rewrite q3.

Let h(q) be the height of q and l(q) be the number of leaves in q. The number
of LPI lookups is bound by Σp∈LP (q)2

|p| ≤ l(q)× 2h(q). If the query q is a join of tree
patterns (tpqs) then the bound becomes Σtpq∈q(Σp∈LP (tpq)2

|p|).

LPI Completeness is guaranteed by the fact that if a view v can be embedded in
the query q, then LP (v) ⊆ SP (q).

4.4.2.4 Return Path Indexing (RPI)

RPI is the last strategy that we consider. Let RP (v) be the set of all rooted paths
in v which end in a node that returns some attribute. Index v using each element of
LP (v) as key. The number of (key,value) pairs is also in Θ(|RP (v)|). The indexing
keys for v1 are book and book.title, for v2 are book and book.author.last etc.

View Lookup for RPI coincides exactly with the lookup for LPI. The lookup of
q1 retrieves the definitions of the views v1, v2, v5, v6 and v8, the same as LPI. For
q2, RPI lookup retrieves the definitions of v1, v2, v6 and v8. Observe that unlike
LPI, RPI in this situation does not return v5, which indeed is not useful! We end
by noting that this increase of precision of RPI over LPI is not guaranteed. For
example, an RPI lookup for q3 retrieves the definitions of all views in Figure 4.6,
which is much less precise than LPI.

RPI Completeness is established in a similar fashion to the LPI case.

4.5 Experimental Results

In this section we present a set of experiments studying ViP2P performance.
Section 4.5.1 outlines the experimental setup. ViP2P attempts to speed up query
processing by exploiting pre-computed materialized views. This shifts the com-
plexity of extracting and sending interesting data across the network, from query

70 CHAPTER 4. DISTRIBUTED VIEW-BASED DATA DISSEMINATION

processing to view materialization, to which we devote the most attention in our
experiments. Several parameters determine view materialization performance:
the distribution of the documents and views in the network, the documents which
contribute to each view, the documents and views size etc. Section 4.5.2 starts by
studying view materialization in the context of a single peer. Then, Section 4.5.3
examines view materialization in the large, in widely different network configura-
tions, varying the number and the distribution of publisher and consumer peers.
Section 4.5.4 presents an evaluation of the indexing strategies for query rewrit-
ing presented in Section 4.4.2. Finally, Section 4.5.5 presents experiments that
evaluate the performance of the query execution engine.

4.5.1 Experimentation Settings

Infrastructure Setup We have carried our experiments on the Grid5000 in-
frastructure (https://www.grid5000.fr), providing computational resources dis-
tributed over nine major cities across France. Figure 4.7 shows Grid5000 network
topology. Sites are interconnected with a 10Gbps network and within each site,
nodes are interconnected with (at least) 1Gbps Ethernet network. The hardware
of Grid5000 machines varies from dual-core machines (of at least 1.6 GHz clock
speed) with 2GBs of RAM to 16-core machines with 32GBs of RAM. We settled for
a random and heterogeneous distribution of hardware, in order to be close to real
P2P deployment scenarios. However, in some experiments, we deliberately choose
sites being very far away from each other, almost being the two opposite ends of
the network, to show the scalability of our platform in the most difficult scenarios
imagined within the Grid5000 network.

Data Generation To have fine control over all the parameters impacting our ex-
periments, we have used synthetic data, produced by two existing XML data gen-
erators: ToXGene [BMKL02] and MemBeR [AMM05].

Experimentation Parameters We summarize the main parameters characterizing
our experiments in Table 4.1. For each set S, we use |S| to denote the size of the
set. Thus, |P | is the number of peers in the network etc. Finally, for a document
d, we use |d| to denote the size of d, measured in Megabytes (MBs).

Evaluation Metrics In our measurements, we use the following metrics to char-
acterize the system performance:

— Materialization time is the time needed for the network to materialize a
set of views populating them with the data extracted by all the documents
published in the network. The materialization time starts at the time in-
stance that a peer initiates the first extraction of data and ends at the time
that all peers have extracted and shipped the tuples to the appropriate view
holders.

— Tuple extraction time for a view v and a document d is the time needed
for the publisher of d to extract from d the tuples which make up v(d).

— Storage time for a document d and a view v is the time taken by the con-

4.5. EXPERIMENTAL RESULTS 71

Figure 4.7: Grid5000 network topology.

sumer holding v, to add to the corresponding BerkeleyDB database the set
of tuples corresponding to v(d).

— Data exchange time for a document d and view v is the time needed for
the tuples v(d) to be transferred across the network from the publisher of d
to the consumer holding v.

— Lookup time for a query q is the time needed for the peer asking q to lookup
in the DHT the views that may be useful to rewrite q.

— Embedding time for a query q and a set of views V is the time needed
by the query peer to verify which of the views may actually be used to
rewrite q. Recall from Section 4.4.2 that this is established by checking
for the presence of embeddings between each view v ∈ V and the query q
[TYÖ+08].

— Query response time for a query q is the time elapsed between the moment
when the query has been posed, and the moment when its execution has
finished (as observed at the query peer).

— Time to first result for a query q is the time between the moment when the
query has been posed, and the moment when its first result tuple has been
received at the query peer.

Whenever the query, view, or document are not specified for a given metric, the
metric value is understood to be the sum, over all the documents, views, and queries
used in the respective experiment, of the respective metric, with the exception of the
materialization time. By nature, this metric accounts for many materialization
processes running in parallel, and therefore is not the sum of individual material-
ization times. For instance, assume that publisher p1 publishes a document which

72 CHAPTER 4. DISTRIBUTED VIEW-BASED DATA DISSEMINATION

Symbol Description
P The set of peers in the network
PD The set of peers holding at least one document
V The set of views in the network
PV The set of peers holding at least one view
D The set of all published documents
DV The set of documents matching at least one view

Table 4.1: Parameters characterizing the experiments.

contributes data to a view at p2, while publisher p′1 similarly contributes to a view
at p′2. The peers p1 and p′1 will start at about the same time the materialization
process by looking up views to which they could contribute etc. One of them will
be the last to report that all its tuples have been stored and acknowledged by the
respective consumer peer. The materialization time of this experiment spans be-
tween the first materialization start event, and the last materialization end event,
while the two processes run in parallel.

4.5.2 View Materialization Micro-benchmarks

We start by studying the performance of extracting from a document d, the
tuples corresponding to a view v, and sending these v(d) tuples from the peer
holding d to the one storing v. To focus exactly on the process of extraction,
we use very simplistic network settings. View materialization in more complex
settings and larger scale will be studied next.

Experiment 1: Sequential vs. Parallel Extraction of Views As described in
Section 4.3.2, a ViP2P peer p is capable of simultaneously matching several views
v1, v2, . . . , vk on a given document d residing at p. The corresponding tuples v1(d),
v2(d), . . ., vk(d) are extracted during a single traversal of the document d, instead
of k traversals (one for each of the k views). This is important when publishing
a document d in case the publisher finds out that many previously defined views
could match d, and therefore it has to match all of them against d. While parallel
extraction is faster, it may require more memory, since matches for the various
views have to be constructed and kept in memory at the same time.

Our first experiment studies the effect of extracting data for several views in
parallel. We use a document d and two distinct sets of views. First, we consider
a four-view set of the form {//ti ID} for i ∈ {1, . . . , 4}. Second, we consider a
larger set including views of the form {//ti ID} for i ∈ {1, . . . , 8}. The views and
d are chosen so that d contributes 130,000 tuples to each published view vi. The
parameters characterizing the experiment are as follows:

|P | |PD| |V | |PV | |D| |DV | |d|
2 1 {4, 8} 1 1 1 100MB

4.5. EXPERIMENTAL RESULTS 73

 0

 10

 20

 30

 40

 50

4 8

E
x
tr

a
c
ti
o

n
 t
im

e
 (

s
e
c
)

Number of patterns

Parallel Extraction
Sequential Extraction

 0

 5

 10

 15

 20

 25

 30

 35

 40

 100 200 300 400 500

T
im

e
 (

s
e

c
)

Size of document (MB)

Data exchange time
BDB storage time

Extraction time

Figure 4.8: Experiment 1: parallel vs. sequential extraction time (left); experi-
ment 2: view materialization over different-size documents (right).

Figure 4.8 (left) depicts the extraction time when extracting data out of d for
four and for eight views, in a parallel and sequential fashion. We observe that
parallel extraction accelerates data extraction (in this case, up to 40%). Therefore,
we will always use parallel extraction in the subsequent experiments.

Experiment 2: Studying One Data Transfer Pipe We now study the materializa-
tion of documents of various sizes, in order to identify the bottleneck of the ma-
terialization process. Possible bottlenecks are (i) data extraction at the document
publisher; (ii) network bandwidth between a consumer and a publisher; (iii) view
storage time at the consumer. For this experiment, the following parameters are
used:

|P | |PD| |V | |PV | |D| |DV | |d|
2 1 1 1 1 1 {100, . . . , 500}MB

One peer plays the role of the publisher, while the other is the consumer. The
peers are located at two opposite ends of France (Lille and Grenoble). The doc-
ument and the view are chosen so that the complete content of the document
is extracted and sent to the consumer, thus, the materialized view size increases
linearly to the size of the document.

Let us now detail the synchronization of the various processes involved when
a publisher sends data to a consumer to be added in a view.

1. The publisher extracts data locally. After all the tuples from v(d) have been
computed, the publisher starts sending them to the consumer 2.

2. Packets of tuples are sent over the network to the consumer in an asyn-
chronous way using buffers at the consumer side.

2. This could be improved to parallelize extraction and sending in some cases, but there are
fundamental limitations: for some of the views we support, one needs to wait for the full traversal
of the document before producing an output tuple [GNT09].

74 CHAPTER 4. DISTRIBUTED VIEW-BASED DATA DISSEMINATION

3. At the consumer, a thread picks packets of tuples from the buffer and stores
them in the BerkeleyDB database.

The buffer at the consumer can be parameterized to control the data transfer
speed: when the buffer is full because the storage thread is not sufficiently fast,
data transfer stalls. For this experiment, the size of the data buffer was set to
unlimited (making sure in advance that the memory of the consumer is enough to
store all the produced tuples), so that the data exchange thread can use as much
as possible of the available bandwidth between the two peers.

Figure 4.8 (right) depicts the time needed for the view tuples to be (i) extracted
from the document, (ii) sent over the network and (iii) stored in BerkeleyDB at
the consumer. We observe that the three times increase linearly in the size of
the data. Data extraction is the slowest component, however, overall, times were
comparable (also recall that the network connection is fast within the Grid, thus
transfer times may be higher in other contexts).

Conclusion From the above two experiments, we conclude that (i) parallelizing
data extraction does speed up the time to compute view tuples; (ii) extraction
time grows linearly to the size of the input document and (iii) data transfer and
data storage time grow linearly with the size of the extracted tuples.

4.5.3 View Materialization in Large Networks
We now consider view materialization in larger and more complex environ-

ments, with many publishers and/or many consumers.

Documents For these experiments, we needed to tightly control which parts of the
published data are relevant to which views on each peer. Therefore, unless stated
otherwise, we rely on documents whose shape is outlined on the left of Figure 4.9.
There are always 64 camera elements under one catalog, and each camera has 4
children. To obtain different document sizes, we insert text of varying length in
the description of each camera.

Experiment 3: One Publisher, Fixed Data, Varying Number of Consumers In
this experiment, we use a single publisher, a fixed data set (5 documents of 50 MBs
each), and a varying number of consumers (from 1 to 64). Each consumer always
holds exactly one view. All the published data is relevant for some view; moreover
the view contents do not overlap, i.e., the data is practically “partitioned” over
the views. Thus, when there is a single consumer, its view stores the cont of
all cameras from the catalog. When there are two consumers, the view of the
first consumer stores the cont of the cameras from camera1 to camera32, while
the other consumer’s view stores the cont of the rest of the cameras (camera33

to camera64) and so on. This way, the views absorb all the data published. The
producer is located in Lille and the consumers in Sophia-Antipolis (two opposite
ends of France). The parameters values for this experiment are given in the table
below:
|P | |PD| |V | |PV | |D| |DV | |d|
65 1 {1,2,4,. . . ,32,64} {1, 2, 4, . . . , 32, 64} 5 5 50MB

4.5. EXPERIMENTAL RESULTS 75

catalog

camera1

descriptionprice specs

sensor_type

type

. . .camera64

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

T
im

e
 (

s
e

c
)

Number of views that a publisher contributes to

Mat. time: sequential tuple sending
Mat. time: parallel tuple sending

Tuple extraction time

Figure 4.9: Outline of a controlled synthetic document for our experiments (left);
experiment 3: view extraction and materialization time depending on the number
of consumers (right).

Once the tuples are extracted by a publisher, they can be shipped to the view
holders sequentially (the publisher contacts the consumers one after the other)
or in parallel (the publisher ships all the tuples to all consumers concurrently).
At right in Figure 4.9, we show the time needed to extract the tuples, and the
materialization time for the two variations of tuple sending: sequential or parallel.
In both cases, as expected, the extraction time is the same and it increases linearly
with the number of consumers.

When sending tuples sequentially, we observe that the materialization time
increases linearly with the number of consumers (views). In the case of 64 con-
sumers, data extraction takes about 45 seconds, but materialization takes about
200 seconds. Materialization time increases drastically with sequential tuple send-
ing since more and more consumers need to be contacted one after another.

When sending tuples in parallel, we observe that the materialization time is
notably lower than in the case of sequential tuple shipping and that its slope is
almost the same as the one of the extraction time. This is because, as soon as the
tuples are extracted, a pool of threads (one thread for each packet of tuples) takes
over the task of shipping all the tuples in parallel. The bottleneck in this situation
is the upload link of each consumer.

Experiment 4: One Publisher, Varying Data Size, 64 Consumers We study
how materialization time is affected when the total size of published data is in-
creased. We use one publisher. The size of the published data varies from 64MBs
to 1024MBs.

Each of the 64 consumers holds one view of the form //catalog//cameraK cont

where K varies according to the peer that holds the view. For example, the
first consumer holds the view //catalog//camera1 cont, the second holds the view
//catalog// camera2 cont etc. This way, from each document the publisher extracts
64 tuples, each of which is sent to a different consumer. All the content of the

76 CHAPTER 4. DISTRIBUTED VIEW-BASED DATA DISSEMINATION

 0

 2000

 4000

 6000

 8000

 10000

 12000

 64 512 1024

V
ie

w
 m

a
te

ri
a
liz

a
ti
o
n
 t
im

e
 (

s
e
c
)

Size of data published (MB)

Sequential tuple sending
Parallel tuple sending

 0

 200

 400

 600

 800

 1000

 1200

 1400

 64 512 1024 2048 3200

V
ie

w
 m

a
te

ri
a
liz

a
ti
o
n
 t
im

e
 (

s
e
c
)

Size of data published (MB)

Sequential tuple receiving
Parallel tuple receiving

Figure 4.10: Experiment 4: one publisher, varying size of data, 64 consumers
(left); experiment 5: 64 publishers, varying data size, one consumer (right).

documents is absorbed by the 64 views. The parameter values used for this exper-
iment are:

|P | |PD| |V | |PV | |D| |DV | |d|
65 1 64 64 {64,512,1024} {64,512,1024} 1MB

Like in Experiment 3, we run two variations of the same experiment: (i) one
for sequential tuple sending and (ii) one for parallel tuple sending. The graph
at left in Figure 4.10 shows, as expected, that the materialization time increases
linearly with the size of data published in the network in both cases. It also shows
that the materialization time in the case of parallel tuple sending is considerably
shorter (about 3000 sec. instead of 11500 sec. for absorbing 1024MBs of data).

Experiment 5: 64 Publishers, Varying Data Size, One Consumer We now study
the potential for parallel publishing, i.e., the impact of the number of (simulta-
neous) publishers on the capacity of absorbing the data into a single view. The
published data size varies from 64MBs to 3.2GBs, and all the published data ends
up in the view. The parameter values for this experiment are:

|P | |PD| |V | |PV | |D| |DV | |d|
65 64 1 1 {64,. . . ,3200} {64,. . . ,3200} 1MB

Recall from Section 4.3.2 that the view materialization module maintains a
queue of tuple-send requests and allows only a certain number of concurrent tuple-
extractors to send data to it concurrently. In this experiment we test 2 modes of
tuple-receiving concurrency: (i) the consumer accepts only one tuple-send request
at any given time (sequential tuple receiving); (ii) the consumer accepts at most
64 tuple-send requests concurrently (parallel tuple receiving).

Figure 4.10 (right) depicts the materialization time as the size of the published
data increases. We observe that the materialization time increases proportionally
to the size of published data in both sequential and parallel tuple receiving modes.
Also, parallel tuple receiving reduces the view materialization time by more than
50% (600 sec. instead of about 1400 sec. to absorb 3.2GBs of data).

4.5. EXPERIMENTAL RESULTS 77

 70

 80

 90

 100

 110

 120

 130

 140

 4 8 16 32 64

V
ie

w
 m

a
te

ri
a
liz

a
ti
o

n
 t
im

e
 (

s
e
c
)

Number of peers that data is distributed to

Materialization time

 100

 200

 300

 400

 500

 600

 700

 800

 900

 20 40 60 80 100 120 140 160

V
ie

w
 m

a
te

ri
a
liz

a
ti
o

n
 t
im

e
 (

s
e
c
)

Data size (GB)

Materialization time

Figure 4.11: Experiment 6: publishing the same amount of data from an increas-
ing number of publishers (left); experiment 7: publishing varying size of data in
50 groups of 5 peers each (right).

From the two graphs in Figure 4.10, we conclude that it is faster for the net-
work to absorb data using one consumer and many publishers rather than many
consumers and one publisher. For example, for absorbing 1024MBs of data, the
view materialization time is less than 200 seconds (Figure 4.10 right) for 64 pub-
lishers and one consumer, and about 3000 seconds in the case of one publisher
and 64 consumers (Figure 4.10 left). This is explained by the fact that data ex-
traction is proven to be a slow process (Experiment 2) thus it is slow for a peer to
extract all the available data by itself and ship them to the consumers.

Experiment 6: Varying Number of Publishers, Fixed Data, One Consumer The
purpose of this experiment is to study the impact that the parallelization of doc-
ument publication has on the view materialization time. We use 250MBs of data
distributed evenly across an increasing number of publishers. First, one peer pub-
lishes all the data, then two peers publish half of the data each, then 4, then 8
peers etc. The parameter values for this experiment are as follows:

|P | |PD| |V | |PV | |D| |DV | |d|
65 {1,2,. . . ,64} 1 1 512 512 0.49MB

Figure 4.11 (left) shows how materialization time varies depending on the
number of parallel publishers. The time decreases as the data is distributed to two
and then 4 publishers, as the extraction effort is parallelized. From 8 publishers
onwards, the materialization time increases again, until it stabilizes from 32 to 64
publishers. This increase is due to publishers simultaneously trying to connect to
the consumer and making the consumer’s storage module the bottleneck.

78 CHAPTER 4. DISTRIBUTED VIEW-BASED DATA DISSEMINATION

Exp.
No.

Experiment description Throughput
(MB/sec)

3 One publisher, fixed data, varying number of consumers 10.30
4 One publisher, varying data size, 64 consumers 0.34
5 64 publishers, varying data size, one consumer 5.31
6 Varying number of publishers, fixed data, one consumer 8.05
7 Community publishing 238.80

Table 4.2: Maximum data absorption throughput during view materialization.

Experiment 7: Community Publishing We now consider a more complex sce-
nario. We study materialization time in a setting with (logical) sub-networks, i.e.,
such that no single publisher has data of interest to all views, and no single view
needs data from all publishers. The parameters of this experiment are:

|P | |PD| |V | |PV | |D| |DV | |d|
250 250 50 50 {20K,. . . ,160K} {20K,. . . ,160K} 1MB

We use a network of 250 peers, each of which holds the same number of 1MB
documents. We logically divide the network into 50 groups of 5 peers each, such
that in each group there are five publishers and one consumer (one peer is both
a publisher and a consumer). The data of all publishers in a group is of interest
for the consumer of that group, but it is not relevant for any of the other groups’
views. The group peers are randomly chosen, i.e., they do not enjoy any spe-
cial geographic or network locality etc. The total amount of data published (and
shipped to the views) varies from 20GBs to 160GBs. Figure 4.11 (right) shows
that the materialization time grows linearly with the published data size.

Conclusion This section has studied several extreme cases of view materializa-
tion (very skewed / very evenly distributed, with one or many publishers or con-
sumers etc.), in order to traverse the space of possibilities. Overall, the experi-
ments demonstrate the good scalability properties of ViP2P as the data volume in-
creases, and that ViP2P exploits many parallelization opportunities when extract-
ing, sending, receiving and storing view tuples. Table 4.2 summarizes the results
by providing a global metric, the view materialization throughput, reflecting the
quantity of data that can be published (from documents to views) simultaneously
in the network. Table 4.2 demonstrates that ViP2P properly exploits all opportu-
nities for parallelism in the “community publishing” scenario: the throughput is
of 238 MB/s, while the best comparable result in this area from KadoP is of 0.33
MB/s only [AMP+08].

4.5. EXPERIMENTAL RESULTS 79

4.5.4 View Indexing and Retrieval Evaluation

We now compare the view indexing and lookup strategies LI, RLI, LPI and RPI
described in Section 4.4.2.

Experiment 8: View Indexing and Retrieval We start with a random synthetic
query q of height 5, having 30 nodes labeled a1, . . . , a30. Each node of q has be-
tween 0 and 2 children. We then create three variants of q:

— q′ has the same labels as q, but totally disagrees with q on the structure (if
ai is an ancestor of aj in q, ai is not an ancestor of aj in q′)

— q′′ coincides with q for half of the query, while the other half conserves the
labels of q but totally disagrees on the structure (as in q′)

— q′′′ has the same structure as q, half of it has the same labels a1, . . . , a15,
while the other half uses a different set of labels b1, . . . , b15 (that replace
a16, . . . , a30 respectively).

From each of q, q′, q′′ and q′′′ we automatically generate 360 views of 2 to 5
nodes, totaling 1440 views, such that: the views can all be embedded into their
respective queries, i.e. those generated from q can be embedded in q, those gen-
erated from q′ can be embedded in q′ and so on. We, thus, obtain a mix of views
resembling the original query q to various degrees.

We have indexed the resulting 1440 views in a network of 250 peers, following
the LI, RLI, LPI and RPI strategies described in Section 4.4.2. We then performed
lookups using the four different indexing strategies. The parameters characteriz-
ing this experiment are the following:

|P | |PD| |V | |PV | |D| |DV | |d|
250 0 1440 250 0 0 0

Figure 4.12 (left) depicts the number of views retrieved by each strategy, com-
pared to the number of useful views, which can be embedded into q. We observe,
as expected, that the path indexing-lookup strategies (LPI and RPI) are more pre-
cise than the label based ones (LI and RLI). Moreover, LPI is the most precise, since
it uses as keys longer paths, describing views more precisely.

Figure 4.12 (right) depicts the time spent looking up in the DHT the set of
(possibly) useful views in order to rewrite q, as well as the time spent to check
whether embeddings exist from those views into q. We observe that from this
angle, the label strategies (LI and RLI) perform better than the path strategies,
since the more numerous lookups performed by the path strategies take up too
much time when processing queries.

Figure 4.13 (left) depicts the number of view definitions that were indexed in
the DHT by each view indexing strategy. Figure 4.13 (right) depicts the number
of lookups performed by each strategy for the query we consider. As expected, LI
inserts the largest number of DHT entries. With respect to query-driven lookup, LI
and RLI perform 30 lookups, much less than LPI and RPI that perform 370 lookups
each.

80 CHAPTER 4. DISTRIBUTED VIEW-BASED DATA DISSEMINATION

 400

 600

 800

 1000

 1200

 1400

LI RLI LPI RPI

N
u
m

b
e

r
o

f
v
ie

w
s

View indexing strategy

View definitions retrieved
Useful view definitions

 600

 800

 1000

 1200

 1400

 1600

LI RLI LPI RPI

T
im

e
 (

m
s
)

View indexing strategy

Embedding time
Lookup time

Figure 4.12: Experiment 8: view definition retrieval (left); embedding vs lookup
time (right).

 2500

 2750

 3000

 3250

 3500

 3750

 4000

 4250

 4500

 4750

 5000

LI RLI LPI RPI

#
 o

f
v
ie

w
 d

e
fi
n
it
io

n
s

View indexing strategy

 0

 50

 100

 150

 200

 250

 300

 350

 400

LI RLI LPI RPI

D
H

T
 l
o
o
k
u
p

s

View indexing strategy

Figure 4.13: Experiment 8: lookups generated for retrieving views (left); embed-
ding vs lookup time (right).

From this experiment, we conclude that label-based strategies are preferable,
since the savings at query processing time are more critical than the DHT index size
(which is very modest in all cases) or the precision of look-up, as the retrieved view
definitions are further filtered at the query peer (after the embedding filtering, the
rewriting is run with the same set of views no matter the used strategy).

4.5.5 Query Engine Evaluation

Experiment 9: Query Response Time vs. Query Selectivity and Number of
Results We now investigate the query processing performance as the data size
increases. We use 20 peers, all of which are publishers, 2 are consumers and 1 is a
query peer. The query peer and the 2 consumers are located in 3 different locations
of France (Bordeaux, Lille and Orsay). The parameter values characterizing this
experiment are the following:

4.5. EXPERIMENTAL RESULTS 81

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 20 100 200 500

Q
u

e
ry

 r
e

s
p

.
ti
m

e
 (

s
e

c
)

Result size (tuples)

Query response time
Time to first result

 200

 250

 300

 350

 400

 450

 500

 20 100 200 500

Q
u

e
ry

 r
e

s
p

.
ti
m

e
 (

m
s
)

Result size (tuples)

Query response time
Time to first result

 500

 1000

 1500

 2000

 2500

 3000

 3500

 20 100 200 500

Q
u

e
ry

 r
e

s
p

.
ti
m

e
 (

m
s
)

Result size (tuples)

Query response time
Time to first result

Figure 4.14: Experiment 9: query execution time vs. number of result tuples for
three queries.

|P | |PD| |V | |PV | |D| |DV | |d|
20 20 2 2 {20,. . . ,500} {20,. . . ,500} 0.5MB

The document used in this experiment is the same as the one of Figure 4.9
(left) with a slight difference: the root element catalog has only one child, named
camera.

The views defined in the network are the following:
— v1 is //catalogID//cameraID//descriptionID,cont
— v2 is //catalogID//cameraID//{descriptionID, priceID,val, specsID,cont}

Each view stores one tuple from each document. A v1 tuple from document d
roughly contains all of d (since the description element is the most voluminous in
each camera). A v2 tuple is quite smaller since it does not store the full camera
descriptions. We use three queries:

— q1 asks for the descriptioncont, specscont and priceval of each camera. To
evaluate q1, ViP2P joins the views v1 and v2. Observe that q1 returns full XML
elements, and in particular, product descriptions, which are voluminous in
our data set. Therefore, q1 returns roughly all the published data (from
10MB in 20 tuples, to 250MB in 500 tuples).

— q2 requires the descriptionID, specsID and priceID of each camera. This is
very similar to q1 but it can be answered based on v2 only. The returned
data is much smaller since there are only IDs and no XML elements: from
2KB in 20 tuples, to 40KB in 500 tuples.

— q3 returns the specs//sensor_typeval of each camera. The rewriting of q3
applies navigation over specscont that is stored by v2. The result size varies
from 2KB in 20 tuples to 40KB in 500 tuples.

Figure 4.14 shows the query response time and the time to get the first result
for the 3 queries. The low selectivity query q1 (at left in Figure 4.14) takes longer
than q2, due to the larger data transfers and the necessary view join. The time
to first result is always constant for both q1 and q2 and does not depend on the
result size. For q1, a hash join is used to combine v1 and v2, and thus no tuple is

82 CHAPTER 4. DISTRIBUTED VIEW-BASED DATA DISSEMINATION

output before the view v2 has been built into the buckets of the hash join. This is
done in more or less one second in the case of q1 and about 300ms for q2. Note
that the join is performed on the peer holding v1 as it is faster to transfer v2 at
the peer holding v1. Increases in the total running time appear when more data-
sending messages are needed to transfer increasing amounts of results. For q3,
which applies navigation on the view v2, the time to the first tuple is the time to
evaluate the navigation query locally at v2’s peer and send the first message with
result tuples to the query peer, and this does not grow with the data size.

Conclusion The ViP2P query processing engine scales close to linearly when an-
swering queries in a wide-area network. The fact that ViP2P rewrites queries into
logical plans which are then passed to an optimizer enables it to take advantage
of known optimization techniques used in XML and/or distributed databases, to
reduce the total query evaluation time, and (depending on the characteristics of
the particular physical operators chosen) the time to the first answer. Given the
ViP2P architecture, the peers involved in processing a query are only those holding
the views used in the query rewriting; this is why using only 20 peers for this ex-
periment does not affect its interpretation, since ViP2P query processing involves
only three peers. The network size may only impact the view look-up time, which
is very modest (Section 4.5.4).

4.5.6 Conclusion of the Experiments

Our study leads to the conclusion that the ViP2P architecture scales up well.
In particular, view materialization scales in the number of publishers and con-
sumers, in the size of the network, and in the size of the data. High contention
at a single consumer receiving data from many publishers, and especially at a sin-
gle publisher contributing to many consumers’ views, degrades the ability of the
view holders to efficiently absorb data. However, these contention effects are to be
expected in a large distributed system. Moreover, we showed that when interest
in the published data is more evenly distributed among sub-communities, ViP2P
takes advantage of all parallelization opportunities to increase the data transfer
rate between publishers and consumers by 3 orders of magnitude. Our view ma-
terialization experiments also show the importance of carefully tuning all stages
in the data extraction and data transfer process, including asynchronous commu-
nication and parallelization whenever possible. The cumulated impact of these
optimizations on the data transfer rate between peers are dramatic (more than 4
orders of magnitude increase).

Our query processing experiments show that label-based view indexing strate-
gies are preferable, and indeed we use RLI by default. They also demonstrate
that the ViP2P execution engine scales linearly up to large data volumes, orders of
magnitude more than in previous real DHT deployments [AMP+08, RM09b].

4.6. SUMMARY 83

4.6 Summary

The efficient management of large XML corpora in structured P2P networks
requires the ability to deploy data access support structures, which can be tuned
to closely fit application needs. We have presented the VIP2P approach for building
and maintaining structured materialized views, and processing peer queries based
on the existing views in the DHT network. Using DHT-indexed views adds to query
processing the (modest) cost of locating relevant views and rewriting the query
using the views, in exchange for the benefits of using pre-computed results stored
in views. We studied several view indexing strategies and associated complete
view lookup methods. Moreover, we did an extensive study of our platform’s main
aspects (view materialization, indexing and retrieval, and query processing) in
different scenarios and settings. ViP2P was able to extract and disseminate 160GB
of data in less than 15 minutes over 250 computers in a WAN network [Gri]. These
results largely improve over the closest competing XML management platforms
based on DHTs, and actually implemented and deployed (1 GB of data indexed
in 50 minutes in KadoP [AMP+08], hundreds of MB of data on 11 peers in psiX
[RM09b], which, unlike us, focused only on document indexing and look-up).

Acknowledgements Part of the ViP2P code comes from ULoad [ABMP07]. We
thank Alin Tilea, Jesús Camacho-Rodríguez, Alexandra Roatis, Varunesh Mishra
and Julien Leblay for their help developing and testing ViP2P. Experiments pre-
sented in this chapter were carried out using the Grid’5000 experimental testbed,
being developed under the INRIA ALADDIN development action with support from
CNRS, RENATER and several Universities as well as other funding bodies (see
https://www.grid5000.fr). This work was partially funded by the CODEX (ANR
08-DEFIS-004) and DataRing (ANR 08-VERS-007) projects.

Chapter 5

Delta: Scalable View-based
Publish/Subscribe

In content-based publish/subscribe (pub/sub, in short) systems, users express
their interests as queries over a stream of publications. Scaling up content-based
pub/sub to very large numbers of subscriptions is challenging: users are interested
in low latency, that is, getting subscription results fast, while the pub/sub system
provider is mostly interested in scaling, i.e., being able to serve large numbers of
subscribers, with low computational resources utilization.

We present a novel approach for scalable content-based pub/sub in the pres-
ence of constraints on the available CPU and network resources, implemented
within our pub/sub system Delta. We achieve scalability by off-loading some sub-
scriptions from the pub/sub server, and leveraging view-based query rewriting to
feed these subscriptions from the data accumulated in others 1. Our main contri-
bution is a novel algorithm for organizing views in a multi-level dissemination net-
work, exploiting view-based rewriting and powerful integer linear programming
capabilities to scale to many views, respect capacity constraints, and minimize la-
tency. The efficiency and effectiveness of our algorithm are confirmed through
extensive experiments and a large deployment in a WAN.

The results of this chapter are part of an article submitted for publication on May
1st, 2013 and which is currently being reviewed. Unlike in previous chapters, in
this chapter we will refer to the cost of evaluating a distributed rewriting plan as
computational resources utilization or, simply, utilization.

5.1 Motivation and Outline

Publish/subscribe (pub/sub, in short) is a popular model for disseminating
content to large numbers of distributed subscribers. The literature distinguishes
topic-based pub/sub, where users subscribe to a set of predefined topics, from

1. This can be seen as organizing subscriptions in a dissemination network where data flows
from the source through a network of subscriptions, similarly to water flow in a river delta.

85

86 CHAPTER 5. DELTA: SCALABLE VIEW-BASED PUBLISH/SUBSCRIBE

content-based pub/sub, where users express their subscriptions as custom complex-
structured queries on the published data. Topic-based pub/sub offer better scal-
ability at the expense of subscription expressiveness, while in more complex sys-
tems, the increased expressive power of content-based pub/sub makes it prefer-
able. For instance, within a large company ACME, “senior positions representing
ACME in Singapore” should be pushed to the senior staff which may be interested,
while “sales seminar in Singapore” interests the sales department plus the admin-
istrative staff that must make the travel arrangements.

Pub/sub subscribers are interested in low latency, that is, getting all the results
to their subscriptions, as soon as possible after the data is published. The pub-
lisher of a pub/sub system faces several performance challenges in order to meet
subscriber requirements. The first is matching published items against the set of
subscriptions, a CPU-intensive task. Then, the publisher’s outgoing bandwidth is
another physical limitation, as more and more updates must be sent to the inter-
ested subscribers. Third, the speed of the network connecting the publisher to the
subscribers imposes a lower bound on the dissemination latency.

Both centralized and distributed approaches have been proposed to ad-
dress the above issues, while aiming at latency minimization. The centralized
ones [CDTW00, DAF+03] mostly rely on efficient filtering algorithms for match-
ing the data against subscriptions. However, for more expressive and numerous
subscriptions, subscription matching remains an onerous task. To this end, dis-
tributed pub/sub systems have been proposed [DRF04, GSAA04, Pap05, TBF+03],
providing solutions for serving thousands or millions of subscribers with minimum
resources utilization and low latency. In most cases, they focus on distributed fil-
tering and design overlay networks in the form of logical multicast trees. Those
trees are formed by specialized nodes, called brokers, able to efficiently filter and
move the data from the publisher to the subscribers, or by the subscribers them-
selves. Nevertheless, as the amount of subscribers and data increases, the pub-
lisher’s (or broker’s) resource capacity becomes insufficient.

Problem Statement To overcome the above resource constraints, we allow the
subscribers to take part in the dissemination of data (i.e. serve other subscribers
that have similar interests) in order to offload the data publisher. Due to their sim-
ilarity of interests, the subscribers can form a logical overlay network, over which
subscription results can flow from the data publisher to the subscribers. Since
subscribers have to use their resources to serve others, the problem we consider
is how to (i) minimize the total resource utilization (e.g., CPU and bandwidth),
while (ii) keeping the subscription latency as low as possible, and (iii) respecting
the given resource capacity constraints.

The key idea on which we build our approach is that subscriptions often over-
lap, completely or partially, when user interests are close. In such a case, results
of several subscriptions can be combined to compute the results of other subscrip-
tions. For instance, from the subscriptions s1: “open positions in Asia” and s2: “open
positions in Sales”, one can compute s3: “open Sales positions in Asia” by joining s1
and s2.

5.1. MOTIVATION AND OUTLINE 87

D

s5

s4

s3

s2

s1

(a)

Level 1

D

s5s4

s3

s2

s1

(b)

Level 1 Level 2 Level 3

D s5s4s3s2s1
Level 1 Level 2 Level 3 Level 4 Level 5

(c)

Figure 5.1: Sample dissemination networks.

Rewriting Subscriptions More formally, a subscription can be rewritten based on
other subscriptions, by filtering their results, e.g., through classic database selec-
tions and projections, combining them through joins, etc. For instance, rewriting
and serving s3 based on s1 and s2 instead of the publisher, relieves the publisher
from the effort of computing s3 against the published data, and saves bandwidth
between the publisher and the site of s3. At the same time, rewriting s3 from
s1 and s2 incurs computations to the sites of s1, s2 and/or s3 to evaluate the
rewriting, and also bandwidth consumption from the sites of s1 and s2, to the
site of s3. Notice that if we consider subscriptions as queries (or views), decid-
ing how to serve a subscription based on others, can be turned to a problem of
view-based query rewriting, which has been extensively studied in the database
literature (e.g. [PH01, MKVZ11]).

Multi-level Subscriptions Moving a subscription from being served directly by the
publisher (we call this a level 1 subscription), to being served from other subscrip-
tions by rewriting (we call this a level 2, level 3 subscription, etc.), changes the data
transfer and processing paths, with many possible consequences on subscription
latency and resources utilization for data dissemination.

For illustration, Figure 5.1 shows three possible dissemination networks. At
left (a), there is only one level and all subscriptions are filled from the publisher
D. The data paths from D to all subscriptions are as short as possible, however
all the load is on D. At (b), the subscription s5 gets its data from s4 instead of the
publisher, while s4 results are computed based on s1 and s2. At (c), only s1 is filled
from D, while s2 gets data from s1, s3 from s2, etc. The load on the publisher is
minimal, but the four hops from D to s5, increase the latency of this subscription

More generally, dissemination effort decreases at the publisher, at the expense
of subscribers joining this effort. A less-loaded publisher will likely match data
against the rest of the subscriptions faster, which may reduce the total latency for
all the subscriptions. However, moving a subscription to a higher level length-
ens the data path from the publisher to that subscription, which may increase its
latency. Finally, pushing some processing at the subscribers require taking into

88 CHAPTER 5. DELTA: SCALABLE VIEW-BASED PUBLISH/SUBSCRIBE

account a new set of capacity constraints, since subscriber resources should be
sparingly used, to keep the respective sites willing to participate in the system.

Contributions and Outline Given a set S of subscriptions and a data publisher
D, we term configuration a choice for each subscription s ∈ S of filling s either
(i) directly from D or (ii) by rewriting s over some other S subscriptions and thus
computing s results from these other subscriptions’ results. The cost of a config-
uration is a weighted sum of the resource utilization and subscription latencies
incurred by the configuration. This work makes the following contributions:

— We show how to model the problem of finding a minimum-cost configura-
tion under some resource capacity constraints as a graph problem, related
to the known Degree-bounded Arborescence problem [BKN09], but depart-
ing from it through our interest in minimizing both resource utilization and
latency. As we will explain, resource utilization and latency differ in funda-
mental ways, making existing solutions inapplicable in our setting.

— Based on this insight, we provide a novel two-step algorithm for selecting
a configuration. First, we employ an Integer Linear Programming (ILP)
approach to find a resource utilization-optimal solution (ignoring latency);
second, we provide a latency optimization algorithm which starts from the
configuration found by the ILP solver and modifies it to reduce latency.

— We have implemented all our algorithms and performed extensive experi-
ments, including a deployment of Delta on a significant-size pub/sub sce-
nario on a WAN. Our experiments demonstrate the efficiency and effective-
ness of our algorithms and the practical interest of multi-level subscriptions
in large data dissemination networks.

The chapter is organized as follows. Section 5.2 introduces our problem and
presents its graph-based formalization. Section 5.3 describes our algorithms for
selecting an efficient configuration, based on the graph models previously intro-
duced. Section 5.4 details our view-based approach for rewriting subscriptions
based on other subscriptions, given the large number of subscribers. Section 3.6
describes our experiments, we then discuss related works and conclude.

5.2 Problem Model

We now describe our multi-level subscription problem model.
Let D denote a data source publishing a set of data items i1, i2, . . . and

S = {s1, s2, . . . , sn} be a finite set of subscriptions, each defined by a query and
established on some network site. The semantics of a subscription s defined by
query qs and issued at site ns is that s must receive the results of qs(i) for any
data item i published by the data source D after s was created. From now on, for
simplicity, whenever possible we will simply use s to denote both a subscription
and the query defining it.

At the core of our work is the observation that it may be possible to com-
pute results of a subscription out of the results of others. We say subscrip-

5.2. PROBLEM MODEL 89

tion s can be rewritten based on subscriptions s1, s2, . . . , sk, if there exists a
query r, which, evaluated over the results of s1, s2, . . . , sk, produces exactly the
results of subscription s, regardless of the actual data items published by D:
r(s1(D), s2(D), . . . , sk(D)) = s(D) for any D, or more simply, r(s1, s2, . . . , sk) ≡ s,
where ≡ denotes query equivalence.

Subscriptions = Views Observe that we are interested in complete rewritings,
that is, we assume that r can either rely completely on the data source, or on the
results of other subscriptions s1, s2, . . . , sk. This is because our goal is to off-load
subscriptions from the data source and serve them solely from other subscriptions
instead. In turn, a subscription s rewritten based on s1, . . . , sk as above, may be
used to rewrite another subscription s′. This shows that every subscription may be
considered as a (materialized) view, based on which to rewrite the others. Thus,
from now on, for conciseness, we will simply use view to designate a subscription.

In the sequel, we introduce the central concepts and data structures of our
work. We define rewritability graphs (RGs) and configurations in Section 5.2.1.
Section 5.2.2 presents the basic metrics we use to gauge the interest of a configura-
tion, namely utilization and latency, and shows how to incorporate load balancing
in the discussion under the form of constraints over the configurations. Based on
these notions, Section 5.2.3 formalizes our problem statement.

5.2.1 Rewritability Graph (RG)

A rewritability graph (RG) indicates which views can be rewritten based on
other views. Its simplest representation is an AND-OR rewritability graph as in,
e.g., [Gup97]. For each view v at site s, there is a corresponding node in the
AND-OR graph (if the same v is declared at n distinct sites s1, s2, . . . sn, there are
n corresponding nodes in the graph). Moreover, for every view set v1, v2, . . . , vk,
based on which v can be equivalently rewritten, there exists a ∧ (AND) node av
such that: (i) each of the nodes corresponding to v1, v2, . . . , vk points to av, and
(ii) av points to the v node. If v can be rewritten based on several view sets, there
will be one ∧ node pointing to v for each such rewriting possibility 2.

A sample RG over seven views is depicted in Figure 5.2. Each view can always
be evaluated directly from the data source D, thus, for each view v, there is a ∧
node through which D is connected to v. Further, in Figure 5.2, v2 and v3 can be
used to rewrite v5, as shown by the lower ∧ node pointing to v5; v3 and v4 can be
used to rewrite v6, etc. Observe that there may be cycles in the RG: v6 can be used
to rewrite v7 and vice versa. This entails that v6 and v7 are equivalent.

Formally, given a view set S, an RG is a directed graph, defined by the pair
(V ∪ {D} ∪ A,E), such that:

— V ∪ {D} ∪ A is the set of nodes:
— For each view si ∈ S, there exists a corresponding node vi ∈ V .

2. To keep the AND-OR graph shape, one would have needed to use a ∨ node pointing to v and
have the ∧ nodes pointing to that ∨ node instead of v directly. We omit the ∨ nodes for simplicity.

90 CHAPTER 5. DELTA: SCALABLE VIEW-BASED PUBLISH/SUBSCRIBE

D

∧

∧

∧

∧

v4

v3

v2

v1

∧
∧
∧

∧

v6

v5

∧
∧

∧
∧

v7

Figure 5.2: Rewritability Graph (RG).

— D is the node corresponding to the data source.
— A is the set of ∧ nodes, each of which represents a rewriting of a view

s ∈ S based on a set of other views {s1, s2, . . . , sk} ⊆ S \ {s}.
— E ⊆ ((V ∪{D})×A)∪ (A× V) is the set of directed edges that connect the

graph’s nodes as follows:
— V nodes (as well as D) can only point to A nodes, while A nodes can

only point to V nodes.
— Each node a ∈ A has an indegree of at least one, and an outdegree equal

to one.
— For each view v ∈ V , there exists a ∧ node av ∈ A such that (i) D →

av → v and (ii) D is the only node pointing to av.
— For each view set {s1, s2, . . . , sk} based on which another view s can be

rewritten, there exists a ∧ node av ∈ A such that the edges (v1, av),
(v2, av), . . . , (vk, av), (av, v) ∈ E.

Size of RG The number of nodes in an RG is |V |+ |A|+ 1 (where 1 corresponds to
D). We have |V | = |S|, which is the number of views (subscriptions). As for the A
nodes, there is one for every V node v, connecting D to v (thus, |S| such A nodes).
Moreover, we have one A node for every view set that can rewrite a view v. Since
there are |S| − 1 views that can be used to rewrite v (we exclude v itself), we can
have at most 2|S|−1 such A nodes for v. Thus, we have |A| ≤ |S| × (2|S|−1 + 1).

We now turn to the number of edges. Since by definition the outdegree of each
A node is one, there are |A| edges from A to V nodes. Furthermore, an A node
has at most |S| − 1 incoming edges (a rewriting can involve at most that many
views), leading to at most |A| × (|S| − 1) edges from V to A nodes. Hence, we
have |E| ≤ |S|2 × (2|S|−1 + 1) ≈ |S|2 × 2|S|.

Clearly, an RG may be very large when there are many views. Therefore, it is
also of interest to develop partial rewritability graphs, each of which can be seen
as the RG from which some ∧ nodes (and their corresponding input and output
edges) have been erased.

Configuration (CFG) Given an RG, a configuration (CFG) is a subgraph of RG
encapsulating a concrete choice of how to rewrite every view v ∈ V . Specifically,

5.2. PROBLEM MODEL 91

in a configuration, only a single ∧ node points to each view. Moreover, there exists
a directed path from D to each view of the RG 3.

Formally, given an RG rg = (V ∪ {D} ∪ A,E), a CFG cfg = (V ∪ {D} ∪ A′, E ′)
is a subgraph of rg such that:

— A′ ⊆ A and E ′ ⊆ E;
— for any v ∈ V , there exists exactly one a ∈ A′ such that a→ v;
— there exists a path from D to any view v ∈ V ;
— for each node a ∈ A′, if edge (vi, a) ∈ E (for each vi ∈ V), then (vi, a) ∈ E ′.
The last point in the above definition guarantees that when we select an A

node to be included in cfg, we also select all its incoming edges that constitute
the rewriting. Observe that a CFG completely specifies the paths along which
data is disseminated to all the subscribers. Moreover, multiple data dissemination
paths starting from the source D may meet, for instance, when two views v1 and
v2, together, rewrite another view v3.

The number of CFGs which may be derived from an RG is Πv∈V (in(v)) where
in denotes the indegree of a view node. It follows from the RG size estimations
that the upper bound for the number of CFGs is |S|2|S|, which is extremely high.

5.2.2 Characteristics of a Configuration

We now discuss how to quantify the cost of a CFG.
For each rewriting (∧) node in a CFG, there can be several ways of distributing

the effort entailed by the rewriting (typically selections and joins) across the net-
work nodes in which the views reside. For example, consider the views v2, v3 and
v5 of Figure 5.2. Assume that v2 resides on site n2, v3 on n3 and v5 on n5. To join v2
and v3, they could both be shipped to the site n5 and joined there. Alternatively, v3
could be shipped to n2, the join could be evaluated at n2 and the results shipped to
n5, at a different resources utilization. More generally, the utilization incurred by
the operations of a ∧ node depend on the operations’ types and ordering, where
each operation runs etc.

Distributed Resources Utilization To estimate the resources utilization of a given
∧ node, we quantify the resources (e.g., I/O, CPU, bandwidth) needed for its
execution over the various sites.

Let N be the set of network sites on which work can be distributed (we assume
for simplicity N is the set of all the sites having subscriptions), and k be the num-
ber of distinct resources considered for each site, such as: I/O at that site, CPU,
incoming and outgoing bandwidth, etc. Let P∧ be the set of all physical plans for
a given ∧ node. We define the utilization function u : P∧ → �|N |×k, assigning to
each plan p ∈ P∧, the estimated resources utilization, along different resource di-
mensions, entailed by the evaluation of p. Observe that each result of u is a matrix
stating the consumption along each dimension and at each site.

To enable comparing utilizations, we rely on a single utilization aggregator

3. This also guarantees that a configuration is acyclic.

92 CHAPTER 5. DELTA: SCALABLE VIEW-BASED PUBLISH/SUBSCRIBE

U : �|N |×k → �, which combines the utilization of all the different resource com-
ponents of the sites involved in the execution of a plan, and returns a single (real)
number. The aggregator may for instance sums up all the utilization components,
possibly assigning them various weights depending on the metric and/or the site
involved. In the sequel, for a plan p ∈ P∧, we will simply write U(p) to denote the
scalar aggregation U(u(p)) of p’s multidimensional utilization.

Finally, for a given ∧ node a ∈ A, we denote by U(a) the smallest value of
U(p), over all the plans p ∈ P∧. Moreover, the utilization of a CFG cfg = (V ∪
{D} ∪ A′, E ′) is:

U(cfg) =
∑
a∈A′

U(a).

Latency In a CFG, given a data item i and subscription v such that v(i) 6= ∅,
the data dissemination latency of v with respect to i, denoted λ(v, i), is the time
interval between the publication of i and the moment when v(i) reaches the site
of v. In the sequel, we may simply use λ(v) to denote v’s latency.

Clearly, λ(v) is determined by the paths in CFG followed by the data that is
moving from D to v. Each ∧ node a encountered along these paths adds to the
latency its contribution, which we term local latency of a. That reflects the delays
introduced on the propagation of data in the rewriting graph, by evaluating that
rewriting. For instance, if the best physical plan for a ∧ node requires shipping
data across the network from n1 to n2 and performing a join at n2, the local latency
of this node will reflect the data transfer and the processing time in the join. We
assume available a local latency estimation function l, which estimates the local
latency introduced by a. We stress that l(a) characterizes only the operations at
the rewriting node a, and not the behaviour of its input(s).

Given that for every subscription v there is a single ∧ node av pointing to v
(see RG definition, Section 5.2.1), v’s latency is equal to the total latency of av
(denoted λ(av)), thus λ(v) = λ(av). This latency can be computed by adding av ’s
local latency l(av) to the maximum latency of the subscriptions {vi} that are inputs
to av. Denoting by vi → av the fact that node vi points to av in the RG, we have:

λ(av) = λ(v) = maxvi→av({λ(vi)}) + l(av)

Note that the latency of D is defined as 0. We also define the latency of a CFG
cfg = (V ∪ {D} ∪ A′, E ′) as follows:

λ(cfg) =
∑
v∈V

λ(v).

Cost We define the cost of a ∧ node a in a CFG as a linear combination of its
utilization and latency:

C(a) = α× U(a) + β × λ(a)

5.3. CONFIGURATION SELECTION 93

where α and β are coefficients controling the importance given to the utilization
and latency. A high α prioritizes solutions of low utilization, incurring a low con-
sumption of resources across the network, while a high β prefers solutions having
a low latency, favoring quick dissemination of data to the subscribers. Finally, we
define the cost of a CFG cfg = (V ∪ {D} ∪ A′, E ′):

C(cfg) =
∑
a∈A′

C(a).

Constraints In practice, resources such as CPU, memory, incoming and outgoing
network bandwidth, are limited on each site. This has to be taken into account
when deciding whether to use a view v1 to feed another view v2 with data, since
doing so incurs some consumption of resources on the site of v1: such resource
consumption should be kept within the capacity limits. Each site may have differ-
ent such capacity constraints, according, for instance, to its specific infrastructure
or available bandwidth.

We make the simplifying assumption that there is a single view published in
each network site. We model capacity constraints by a single integer Bout

v , which
is the maximum number of views that can be served by v (and which coincides
with the maximum number of views served by a network site, since there is one
view per site), and design our algorithms to operate within these constraints. This
can be easily extended to more (and more complex) constraints.

5.2.3 Problem Statement

Given an RG rg = (V ∪ {D} ∪ A,E), a cost function C, a limit Bout
v for each

v ∈ V , as well as a limit Bout
D for the data source, the problem we address is to find

a CFG cfg = (V ∪ {D} ∪ A′, E ′), such that:

1. Capacity constraints are respected:

∀v ∈ V ∪ {D}, out(v) ≤ Bout
v

where out(v) denotes the outdegree of node v in the CFG;

2. The cost of CFG C(cfg) is minimized.

5.3 Configuration Selection

We now describe our approach for selecting a low-cost configuration. We
start by discussing RG construction in Section 5.3.1. Section 5.3.2 provides an
overview of the CFG selection, a two-step process described in detail in Sec-
tion 5.3.3 and 5.3.4, respectively. Section 5.3.5 shows how we treat with CFG
updates (view addition/removal).

94 CHAPTER 5. DELTA: SCALABLE VIEW-BASED PUBLISH/SUBSCRIBE

Algorithm 4: Partial RG Generation
Input : View set V , maximum number k of rewritings per view
Output: RG of V with at most k rewritings per view
// RG initially contains only V and D

1 A← ∅, E ← ∅, G← (V ∪ {D} ∪A,E)
2 foreach v ∈ V do
3 rewrNo← 0
4 while hasNextRewriting(v, V \ {v}) and (rewrNo < k) do

// Get next rewriting
5 rw ← nextRewriting(v, V \ {v})
6 A← A ∪ {rw} // Add rewriting (∧) node rw
7 E ← E ∪ {(ui, rw)}, ∀ui ∈ rw // Add edges to rw
8 E ← E ∪ {(rw, v)} // Add edges to v
9 rewrNo++

// All views are also fed by D
10 E ← E ∪ {(D, u)}, ∀u ∈ V
11 return G

5.3.1 Rewritability Graph Generation

Given a set of views, we show how to construct the corresponding RG, mod-
elling the ways to rewrite views based on other views.

Naive RG Generation Assume we initially create a graph that contains the nodes
(V ∪ {D}), as well as the ∧ nodes that are needed to connect D with each view
v ∈ V (along with the corresponding edges). Based on this graph, the most direct
way of building the RG is by calling the view-based rewriting algorithm exhaus-
tively, and adding, each time a rewriting is found, the corresponding ∧ nodes and
edges. This simple method requires calling the rewriting algorithm |V | times, us-
ing each time |V | − 1 views. Given the typically high complexity of view-based
query rewriting algorithms, this method is unlikely to scale to large problems.
Moreover, even if we optimize the calls to the rewriting algorithm (e.g., by reduc-
ing the number of views we use as input each time, as discussed in Section 5.4),
the resulting complete RG is usually too dense, hampering in turn the process of
choosing a CFG from RG.

Partial RG Generation In the interest of efficiency, one can limit the search per-
formed during each call to the rewriting algorithm to at most k rewritings. In
other words, we only consider the first (at most) k alternative ways we find to
rewrite a given query. Clearly, the internals of the rewriting algorithm affect the
order in which rewritings are explored and, thus, the first k rewritings found; we
will revisit this issue in Section 5.4. Algorithm 4 outlines the construction of the
partial RG, obtained through this limited exploration of rewritings. When a view
cannot be rewritten based on the others, Algorithm 4 connects it directly to the
data source D.

5.3. CONFIGURATION SELECTION 95

5.3.2 Configuration Selection Overview

We now turn to the problem of selecting out of a (possibly partial) RG, a CFG
that minimizes the cost as a weighted sum of utilization and latency, under capacity
constraints (as per our problem statement in Section 5.2.3).

Complexity and Relationship with Known Problems We now discuss how our
problem relates to already studied graph problems.

First, consider resources utilization optimization alone, that is, ignore the la-
tency and capacity constraints. This simplified problem can be solved in linear
time, by selecting for each view v in an RG, the lowest resources utilization ∧
node pointing to v, together with the corresponding edge and the ∧ node’s incom-
ing edges.

Now assume given bounds on the number of views that can be fed (i) from D
and (ii) from each view, and consider the problem of finding a CFG that respects
these capacity constraints, without considering the cost. This version of the problem
is more complex than the previous one, as choosing ∧ nodes is no longer a local
decision for each view v in the RG: selecting an ∧ node can break the capacity
constraints of any of the nodes that are serving it.

This last problem of selecting a CFG under capacity constraints is largely con-
nected to the problem of finding a Degree-bounded Arborescence (DBA, for short)
in a given graph. An arborescence is a spanning tree of a directed graph rooted
at a given root node. Although efficient, polynomial-time algorithms have been
proposed for solving the Minimum Cost Arborescence problem [Edm67], finding a
DBA is NP-hard [BKN09]; the NP-hardness is due to the fact that, in order to re-
spect the degree bounds, the edge-selection decisions cannot be local. We have
shown that the DBA problem can be reduced in polynomial time to finding a
capacity-constrained CFG, which is already a specialization of the general prob-
lem we consider (Section 5.2.3), since it does not take into account the cost. This
gives the following proposition:

Proposition 5.3.1. Finding a minimum-cost CFG under capacity constraints is NP-
hard.

Proof. To show that a problem Π is NP-hard, it suffices to show that there exists
another NP-hard problem Π′ that can be reduced in polynomial time to problem Π.
This can be done with the proof by restriction [GJ79]: to show that Π is NP-hard,
we can simply show that the NP-hard problem Π′ is a special case of Π.

We first recal the definition of the Degree-bounded Arborescence (DBA) prob-
lem (which is known to be NP-hard [BKN09]), then introduce a specialization of
the general problem we consider (we term this specialization SCFG). Finally, we
show that finding a DBA can be reduced to the problem of finding an SCFG.
The Degree-bounded Arborescence Problem (DBA). Let G = (V ∪ {D}, E) be a di-
rected graph with root D, and let Bout

v be the bounds on the out-degree of each
vertex v ∈ V . The DBA problem consists of finding an (out-)arborescence starting

96 CHAPTER 5. DELTA: SCALABLE VIEW-BASED PUBLISH/SUBSCRIBE

from D that satisfies the degree bounds, or declare that no such arborescence ex-
ists (if that is the case). Since in an arborescence each vertex except the root has
an in-degree of exactly one, the DBA problem does not consider bounds on the
in-degree.

We now show that we can specialize the problem of finding a capacity-
constrained CFG so that it coincides with the Degree-bounded Arborescence Prob-
lem. This can be done by restricting ∧ nodes in an RG to have only one incoming
node and by ignoring the resources utilization and latency of the selected CFGs. We
formalize this specialization of our problem below.

The Specialized CFG Problem (SCFG). Let G = (V ∪A∪{D}, E) be an RG with root
D, and let Bout

v be the bounds on the out-degree of each vertex v ∈ V ∪ {D}. Each
a ∈ A is allowed to have only one input edge. The goal of the SCFG problem is to
find a feasible SCFG rooted at D that respects the bounds Bout

v , or declare that it
is unfeasible.

First, it is easy to see that the SCFG problem is a specialization of the origi-
nal problem presented in Section 5.2.3, since: (i) it ignores the cost of the CFGs
(resource utilization and latency), and (ii) it restricts all ∧ nodes a ∈ A to have
exactly one input edge. Interestingly, this last restriction allows only for CFGs in
which each subscription is fed by another single subscription, as opposed to the
more general problem we are tackling (Section 5.2.3), in which subscriptions can
be combined (joined) in order to feed other subscriptions.

Second, an SCFG is an arborescence, since:
— all views are reachable from the publisher (or root) D;
— there is exactly one ∧ node that points to each view node v ∈ V ;
— each ∧ node has exactly one input and one output edge.

Since an SCFG is an arborescence, the next question is whether the DBA prob-
lem can be solved with an SCFG solver. If this is possible, and transformations
between DBA and SCFG graphs can be done in polynomial time, then the SCFG
problem is at least as hard as the DBA problem (thus, NP-hard). To answer this
question, we will show how to polynomially transform a graph from the DBA for-
mat into an SCFG solver-compatible graph (SCFG-compatible graphs contain ∧
nodes), and polynomially convert the solution that the SCFG solver has produced
back to a DBA graph (with no ∧ nodes).

In order to transform a DBA input into an SCFG solver-compatible input, one
has to simply replace each edge of the form n1 → n2 of the DBA input graph by
one edge n1 → ∧ pointing to a new ∧ node and a second edge ∧ → n2. In order
to transform an SCFG solution into a DBA solution, one needs to remove the ∧
nodes from the resulting SCFG and connect the input/output edges of all ∧ nodes.
Since the transformations are straightforward, we omit their formal description
and instead illustrate through an example.

Figure 5.3a shows a graph for which we want to solve the DBA problem. Fig-
ure 5.3b shows a derived SCFG solver-compatible graph. Note that, since all ∧
nodes in an SCFG graph have only one input and one output, converting simple
edges from a DBA graph into edge-node-edge triplets (→ ∧ →) and vice versa is

5.3. CONFIGURATION SELECTION 97

D
v4

v3

v2

v1

Bout = 3

Bout = 1

Bout = 0

Bout = 1

Bout = 1

(a) Original DBA graph

D

∧

∧

∧

∧ v4

v3

v2

v1 ∧

∧Bout = 3

Bout = 1

Bout = 0

Bout = 1

Bout = 1

(b) Derived SCFG-compatible graph

D

∧

∧

∧ v4

v3

v2

v1 ∧

(c) SCFG solution

D

v4

v3

v2

v1

(d) Converted SCFG→DBA solution

Figure 5.3: Solving a DBA instance by converting it into an SCFG.

straightforward. Figure 5.3c shows the (only) feasible solution to the SCFG prob-
lem that respects the bounds Bout for all views. Finally, Figure 5.3d shows the
conversion of the SCFG solution into a DBA solution, i.e., a Degree-bounded Ar-
borescence. Clearly, both conversions DBA→SCFG and SCFG→DBA can be done
in linear time.

Finally, the problem of finding an SCFG ∈ NP since a non-deterministic al-
gorithm only needs to guess a solution for a given graph G and then check in
polynomial time whether this solution is indeed an SCFG. To do this, a traversal
of the graph is sufficient (linear time).

In this proof we have reduced the NP-hard DBA problem to the SCFG problem,
and therefore the SCFG problem is NP-hard. Since the SCFG problem is a special-
ization of our original problem (Section 5.2.3), we have shown that our original
problem is also NP-hard.

Importantly, the latest effective techniques for solving DBA and even more gen-
eral network design problems, rely on solving linear relaxations of Integer Linear
Programs [LNSS09]. The idea is to use one boolean variable xi to encode whether
a node (or edge) is part of the solution, and to formulate the total utilization (ob-
jective function) as a weighted sum of all the variables, with the weights being
the respective node (or edge) utilizations. Such an ILP formulation can be handed
to an ILP solver, which takes advantage of advanced techniques that enable it to
solve large-size problems corresponding in our context to many views and many
rewritings.

Two-step Optimization Approach Although our problem (Section 5.2.3) is natu-
rally expressed as a linear program when one considers capacity constraints and

98 CHAPTER 5. DELTA: SCALABLE VIEW-BASED PUBLISH/SUBSCRIBE

optimizes for utilization (ignoring latency), and can thus be delegated to an ILP
solver, it turns out that one cannot rely on an ILP solver to also reduce latency
(as explained in Section 5.3.3). Thus, our approach for addressing the problem is
organized in two steps:

1. Formulate our optimization problem considering utilization and constraints
only as a linear program and delegate it to an efficient ILP solver. We describe
this next in Section 5.3.3.

2. Post-process the utilization-optimal configuration returned by the solver (if
one exists under the given constraints) to reduce latency in a heuristic fash-
ion, as described in Section 5.3.4.

5.3.3 CFG Utilization Optimization Through ILP

Integer Linear programming (ILP) is a well-explored branch of mathematical
optimizations. A wide class of problems can be expressed as: given a set of linear
inequality constraints over a set of variables, find value assignments for the vari-
ables, such that a target expression on these variables is minimized. Such problems
can be tackled by dedicated ILP solvers, some of which are by now extremely effi-
cient, benefiting from many years of research and development efforts. Following
the model for directed graphs of [LNSS09] (with some changes), we formulate
our problem as an integer linear program as follows.

Variables For each node n ∈ V ∪{D}∪A, we denote by Ein
n and Eout

n the sets of its
incoming and respectively outgoing edges. Selecting a CFG amounts to selecting
one way to compute each view, which is equivalent to selecting for each view v,
one of the ∧ nodes pointing to v, or, equivalently, one edge from Ein

v . Thus, for
each v ∈ V and e ∈ Ein

v , we introduce a variable xe, taking values in the set {0, 1},
denoting whether or not e is part of the CFG.

Coefficients Our problem model attached rewriting evaluation utilization to the
rewriting nodes, through the utilization function Ureturning for each ∧ node
a ∈ A, the associated utilization U(a) which aggregates various types of utiliza-
tions (CPU, I/O, network, etc.) Further, as explained in Section 5.2.2, U(a) is the
smallest over the utilizations of all physical plans that could be used for this rewrit-
ing. To simplify the presentation, and since there is a bijection between A, the set
of ∧ node sets, and the set of edges entering view nodes, namely ∪v∈VEin

v , we
move the utilization of each rewriting, to the edge going from the rewriting ∧ node,
to the corresponding rewritten view. The other edges, in particular all those enter-
ing ∧ nodes, are assumed to have zero utilization. Thus, for each rewriting node
a ∈ A and edge e ∈ Eout

a (recall that Eout
a = {e}, that is, each a node has exactly

one outgoing edge), we denote by Ue the utilization U(a). Our final ingredient is
the Bout

v bounds on the views fan-out, introduced in Section 5.2.2.

Putting it All Together Our problem’s ILP statement is given in Table 5.1. Equa-
tion (1) states that each xe variable takes values in {0, 1}, (2) ensures that every

5.3. CONFIGURATION SELECTION 99

Minimize: U =
∑
e∈E
Uexe

subject to:

xe ∈ {0, 1} ∀e ∈ E (1)∑
e∈Ein

v

xe = 1 ∀v ∈ V (2)

∑
e∈Ein

a

xe = xEout
a
× |Ein

a | ∀a ∈ A (3)

∑
e∈Eout

v

xe ≤ Bout
v ∀v ∈ V ∪ {D} (4)

Table 5.1: Utilization optimization problem as a linear program.

view is fed exactly by one rewriting, (3) states that if the (only) outgoing edge of
a ∧ node is selected, all of its inputs are selected as well, and finally (4) ensures
the respect of the Bout

v constraint.

LP Example Consider the RG shown at the top of Figure 5.4, where for illustration
we have added to each ∧ node leading to the view vi, the subscript i and a super-
script j with j = 0, 1, For each edge (n,m) in the RG, where n and m are two
RG nodes, we introduce a variable xn→m stating whether that edge is part of the
chosen configuration. For simplicity, for each node ∧ji pointing to the view vi, we
write xji instead of x∧ji→vi. Thus, xji is a boolean variable whose value 1 indicates

that the view vi is filled by its rewriting ∧ji . Moreover, for each ∧ji , let cji be the
utilization of the processing incurred by that rewriting.

The linear program whose solution is a minimum-utilization CFG for this graph
is shown in the lower part of Figure 5.4. Equation numbers at the left refer to the
generic equations in Table 5.1.

Non-linearity of Latency Still on the RG in Figure 5.4, we now turn to quantifying
the latency of each view. Let lji be the latency of each rewriting ∧ji ; for simplicity
we include therein the impact of all the transfers and processing incurred by the
rewriting.

We consider that D implements an efficient algorithm allowing it to match
simultaneously all the subscriptions it serves, against each newly published docu-
ment. This is the case in state-of-the-art algorithms such as [DAF+03], and also in
our simpler implementation. Thus, the latency component that is due to subscrip-
tion matching at D (as opposed to latency incurred by shipping data from D and
possibly further processing and shipping of data) is the same for all views, and we
ignore it without loss of generality.

Applying our formulas defining latency, we obtain λ(v2) = l02, λ(v3) = l03, since

100 CHAPTER 5. DELTA: SCALABLE VIEW-BASED PUBLISH/SUBSCRIBE

D

∧01

∧02

∧03
∧04

v1

v2

v3 ∧14

∧24

∧11 v4

Minimize: U0
1x

0
1 + U1

1x
1
1 + U0

2x
0
2 + U0

3x
0
3 + U0

4x
0
4 + U1

4x
1
4 + U2

4x
2
4

subject to:
eq.(1) xji ∈ {0, 1}, ∀i, j
eq.(2) x01 + x11 = 1; x02 = 1; x03 = 1; x04 + x14 + x24 = 1;
eq.(3) xD→∧01 = x01; xD→∧02 = x02; xD→∧03 = x03;

xD→∧04 = x04; xv1→∧24 = x24;
xv2→∧11 + xv3→∧11 = 2x11; xv2→∧14 + xv3→∧14 = 2x14;

eq.(4) xv1→∧24 ≤ Bout
v1

; xv2→∧11 + xv2→∧14 ≤ Bout
v2

;
xv3→∧11 + xv3→∧14 ≤ Bout

v3
;

xD→∧01 + xD→∧02 + xD→∧03 + xD→∧04 ≤ Bout
D ;

Figure 5.4: Sample RG and corresponding ILP model.

v2 and v3 are fed directly from the publisher. Since v1 can be fed either through ∧01
or ∧11, its latency is:

λ(v1) = x01l
0
1 + x11(l

1
1 +max(λ(v2), λ(v3))) = x01l

0
1 + x11(l

1
1 +max(l02, l

0
3))

Similarly, given that v3 can be fed through three different ∧ nodes, we have:

λ(v4) = x04l
0
4 + x14(l

1
4 +max(λ(v2), λ(v3)) + x24(l

2
4 + λ(v1)) =

x04l
0
4 + x14(l

1
4 +max(l02, l

0
3)) + x24(l

2
4 + x01l

0
1 + x11(l

1
1 +max(l02, l

0
3)))

Observe that the above expression unfolds into a sum having among its terms
x24x

0
1l

0
1 and x24x

1
1l

1
1, which is non-linear in the problem’s variables xji ; in contrast, the

latencies of v1, v2 and v3 are linear combination of these variables. As a conse-
quence, in these examples and in general, configuration latency cannot be pushed
into the ILP objective function, which only admits linear combinations of variables.

The intuition behind this non-linear behavior is easy to trace on the RG in
Figure 5.4. The variables which end up multiplied correspond to paths of length
2, leading to v4 through v1. If x01 = x24 = 1, v1 is fed from the source and v4 from
v1. If x11 = x24 = 1, v1 is fed from v2 and v3 and v4 from v1. The multiplication
of variables corresponds to the logical conjunction of the edge selection decisions
they correspond to.

Concluding this discussion, we will rely on ILP to solve efficiently and exactly
the utilization optimization problem, and reduce in a second step the latency of
the configuration thus obtained.

5.3. CONFIGURATION SELECTION 101

5.3.4 CFG Latency Optimization

In this second stage, we seek to improve the latency of the CFG obtained by
solving the ILP problem (corresponding to the utilization minimization under con-
straints), by incremental changes on this CFG. We start by introducing a helper
notion:

Impact of a View on CFG Latency Given a CFG cfg, we define the impact of a
view v, denoted by I(v), as an estimation of v’s impact on the latency of all of the
views that are fed with data by v, directly or indirectly. Formally:

I(v) = λ(v)× |nodes of rg reachable from v|

In the above, we consider that any rg node reachable from v is potentially im-
pacted by the latency introduced by v, and, thus, multiply v’s latency by the num-
ber of such nodes. We also define the impact of a rewriting rwv pointing to view v
to be equal to the impact of v: I(rwv) = I(v).

The LOGA Algorithm We have devised a Latency Optimization Greedy Algorithm
(LOGA, in short), given in Algorithm 5, which incrementally tries to improve the
latency of a CFG cfg obtained from an RG rg. The algorithm uses the original rg
in order to replace a rewriting in cfg with another one that leads to a CFG with
a globally smaller latency. It initially orders the rewritings of cfg in descending
order of impact, and then tries to replace first the rewritings with the biggest
impact. Such replacements are made (i) without violating the Bout bounds, and
(ii) without assigning views again to D, since the goal of our work is precisely to
spread the data dissemination work.

Incremental Re-computation of Latency As explained above, a change in the
latency of a view v in a CFG cfg might affect the latency of every view in cfg
accessible from v. Therefore, when the latency of v changes as a consequence of
a replacement, LOGA performs a traversal in topological order of the cfg sub-DAG
rooted at v, to recompute the latency only of the affected views.

Recomputing Impact of Views As the CFG changes through rewriting replace-
ments, the number of nodes reachable from any given view node v must be re-
computed. This number is needed in order to update the impact I(v), at line 5 of
Algorithm 5. The number of nodes reachable from v is determined by the rewrit-
ing opportunities, which in turn depend on the actual views etc. In the worst case
this may require a costly traversal of the whole CFG, however, as our experiments
show (Section 5.5), much fewer nodes are traversed and thus this operation is not
expensive in practice.

5.3.5 Incremental CFG Computation

Adding a new view v to an existing configuration cfg, goes as follows: we
compute v’s rewritings and add them to the existing RG. We then search the RG
for a rewriting rw with the least cost C(rw) such that no bounds are violated in

102 CHAPTER 5. DELTA: SCALABLE VIEW-BASED PUBLISH/SUBSCRIBE

Algorithm 5: Latency Optimization Greedy Algorithm (LOGA)
Input : CFG cfg, RG rg
Output: Latency optimized version of cfg

1 newLat← λ(cfg)
2 repeat
3 prevLat← λ(cfg)
4 rwList← {rw ∈ cfg | 6 ∃ edge (D, rw)}
5 rwList← reorder(rwList) in desc. order of interest I(rw)
6 foreach rw ∈ rwList do
7 minLat← λ(cfg); bestrw ← null

// Replace rw with its latency-optimal alternative (if any)
8 foreach rw′ ∈ rg s.t. rw, rw′ feed the same view do
9 replace rw with rw′ in cfg

10 if (∀v ∈ cfg, outdegree(v) ≤ Bout
v) and (λ(cfg) < minLat) then

11 minLat← λ(cfg)
12 bestrw ← rw′

13 replace rw′ with rw in cfg // leave cfg intact

14 if bestrw 6= null then
15 replace rw with bestrw in cfg
16 newLat← λ(cfg)

17 until prevLat = newLat
18 return cfg

cfg. If such a rewriting rw exists, we add it to cfg; otherwise, v is assigned to
the data source. After a certain number of new subscriptions have been added, or
when the data source’s are been reached, the solver and LOGA are re-invoked and
a full CFG selection takes place.

When a subscription v is withdrawn or its site fails, the views depending on
v, that is those to whose cfg rewritings v contributes, are treated as new and the
above incremental process is followed for each of them.

5.4 View-based Rewriting

We now describe the view-based rewriting framework underlying Delta. Sec-
tion 5.4.1 presents some preliminary notions on views and rewritigs, whereas Sec-
tion 5.4.2 describes an auxiliary structure, the embedding graph, which is used for
building the RG. Then, Section 5.4.3 presents our algorithm for efficiently rewrit-
ing a subscription (view) based on the others. Its novelty resides in its capability
to produce a specified number of solutions, crucial in our setting where not all
rewriting opportunities are explored. Finally, Section 5.4.4 discusses how other
view-based rewriting algorithms could substitute ours, to port the Delta architec-
ture in other distributed dissemination contexts.

5.4. VIEW-BASED REWRITING 103

5.4.1 Views and Rewritings

Since our target applications concern the dissemination of structured text
news, and in order to leverage our previous system development [KKMZ12,
MKVZ11], we built our system for disseminating XML documents to a network
of subscriptions expressed in a rich flavor of XML queries.

Each view is defined by a tree pattern query (as described in Section 2.1.4)
where nodes are labeled with XML element or attribute names, while edges encode
parent-child (single) or ancestor-descendant (double) relationships. Unlike XPath
1.0, and close to XPath 2.0 and to simple XQuery for-let-where-return (FLWR)
expressions, our tree patterns may return content from multiple nodes.

Note that unlike in the previous two chapters, Delta does not consider joins
between tree patterns for two, mostly technical, reasons. The first reason is the
fact that more engineering effort was required in order to develop a fast rewriting
algorithm for joined tree patterns. The second reason is that a more sophisticated
update mechanism would be required in order to update joined tree pattern views
(as they allow joins of tuples that may come from different documents). In this
work we focus more on the algorithms for building rewriting graphs and retaining
low-utilization and low-latency configurations. We use tree patterns as an example
data model that Delta can be based on.

Node IDs are implemented by virtually all efficient XML engines. Therefore, we
include IDs in our views, since, as we have shown in [KMV12], view joins based
on such IDs may lead to very efficient rewritings. As a simple example, consider
the query q defined as //a[//c]//b and the views v1 = //a, v2 = //aID[//c] and
v3 = //aID//b, where v2 and v3 store IDs for the a nodes. One can rewrite q as
v2 ./a.ID v3, or alternatively as v1[//c]//b. The former is likely to be much more
efficient than the latter, because v2 and v3 are more selective than v1, especially if
few a elements have b and/or c descendants.

[MKVZ11] provides an equivalent view-based rewriting algorithm for this lan-
guage. Unsurprisingly, this algorithm has high complexity, therefore, it is not ap-
plicable in a setting like ours with a very large numbers of views. Therefore, we
consider here a sub-language of the one considered in [KMV12, MKVZ11] where
we assume that all nodes are annotated with ID. Moreover, to increase the possi-
bilities of view-based rewriting, we assume IDs are structural: by comparing two
node IDs one can decide if the node corresponding to the one is a parent/ancestor
of the node corresponding to the other. Node IDs are invisible to the user; they
are added by the system to the user-issued tree patterns. Storing IDs in subscrip-
tion data brings a space overhead, but not a very significant one, especially if one
relies on space-efficient encodings of such views [WTW09]. Restricting the view
language to endow all nodes with ID reduces view-based rewriting to a set-cover
problem, as we explain shortly below.

View Embedding It has been shown [MKVZ11, TYÖ+08] that a tree pattern view
v may participate in an equivalent rewriting of another tree pattern view q only if
there exists an embedding φ : v → q respecting (1) node labels, i.e., for any node

104 CHAPTER 5. DELTA: SCALABLE VIEW-BASED PUBLISH/SUBSCRIBE

v1
//aID//bID,cont

v2
//aID,cont//bID,cont

v3
//aID,cont

∧

∧

Figure 5.5: Superposed EG and RG over three views.

n ∈ v, label(n) = label(φ(n)), and (2) structural relationships between nodes, that
is, for any two nodes n,m ∈ v, if n is a /-child (resp., //-child) of m, then φ(n) is a
/-child (resp., descendant) of φ(m). Finally, φ must not contradict value predicates
from the query, i.e., for any node n ∈ v, such that m = φ(n) ∈ q, if m is annotated
with predicate [val = c1] for some constant c1, then n must not be annotated with
predicate [val = c2] for some constant c2 6= c1. It follows readily from the above
properties of embeddings that:

Corrolary 5.4.1. If a view v embeds into a query q, the labels of v are a subset of the
labels of q.

View Coverage We say that a set of views V covers a given view q, iff, for every
attribute att of a node nq ∈ q, there exists a node nv belonging to a view v ∈ V
and an embedding φ : v → q such that φ(nv) = nq and nv is also annotated with
att. We call such a view set V an embedded attribute set cover (EAC) for q.

If we restrict the rewriting algorithm [MKVZ11] to the case when all view
nodes are annotated with ID, it can be shown that the existence of an EAC V for q
is a necessary and sufficient condition for an equivalent rewriting of q based on V
to exist. Indeed, given an EAC V for q, the rewriting can be built using structural
joins (based on the node IDs) between all the involved views, and adding all re-
quired structural predicates (imposing structural relationships present in the query
but not in the views), as well as possible value selection predicates still needed.
We formalize this as follows:

Proposition 5.4.1. A query q can be equivalently rewritten based on a set of views
V , iff V is an EAC for q.

Observe that such a rewriting may be non-minimal; we revisit this issue in
Section 5.4.3.

5.4.2 Embedding Graph (EG)

Given a view set V , in order to build the corresponding RG, we must solve |V |
view-based rewriting problems, one for each view based on the others. To speed

5.4. VIEW-BASED REWRITING 105

up the rewriting process, we can exploit Proposition 5.4.1 to attempt to rewrite a
given view v, only using those views that embed into v. Thus, we are interested
in all view pairs (v1, v2) such that v1 embeds into v2. We encode this embedding
information in an embedding graph (EG, in short), which is a directed graph having
a node for each view v ∈ V and an edge (v1, v2), with v1, v2 ∈ V , iff v1 embeds
in v2. Figure 5.5 depicts a sample EG (view nodes, dotted edges), along with the
corresponding RG (view and ∧ nodes, solid and dashed edges). Next to each view
node, we give its view definition. For instance, v3 embeds in v1 and v2 (as shown
by the dotted edges).

Testing whether v embeds into v′ takes at most |v| × |v′| operations [MKVZ11],
leading to a total complexity of O(|V |2 × |v|2max) for creating the EG, where |v|max
is the size of the largest view in V . Such tests may get quite expensive for large V
sets.

To improve performance, we pre-filter views, based on Corrolary 5.4.1: for v to
embed into v′, the labels of v must be among the labels of v′. We organize the view
definitions in a prefix trie specifically designed to support subset queries [HK99].
Using this trie, given a view v, we can efficiently identify all the views ui such that
labels(ui) ⊆ labels(v).

Algorithm 6 shows how to construct an EG given a set of views V . The algo-
rithm starts by constructing a trie as explained above. Then, it uses the trie as
an index to efficiently build the EG: for a given view v, the trie returns all views
whose labels are a subset of v’s labels. Only the views thus obtained are tested
for embedding into v. Since our pre-filtering has no false negative, Algorithm 6
generates the complete EG.

EG Cycles and their Consequences It is possible for two views to embed into
each other, as for example v1 and v2 in Figure 5.5, leading to cycles in the EG. In
some cases, cycles in the EG lead to cycles in the RG. For instance, in Figure 5.5,
although the EG cycle between v1 and v2 does not directly translate to an RG
cycle, view v3 enables some additional rewritings (such as the one represented by
the upper ∧ node), and in turn these lead to an RG cycle (involving v1, v2 and the
two ∧ edges).

RGs featuring such cycles pose an issue since the ILP solver may return a CFG
with cycles, e.g., feeding v1 from v2 and v2 from v1 in this example, without us-
ing the publisher D at all. Such CFGs do not make sense from the application
perspective, since the data path feeding each view must start at the publisher D.

It can be shown that an RG has cycles only if the EG it has been built from had
cycles. To avoid RGs (and CFG) cycles, we break EG cycles using the cycle removal
algorithm [ELS93].

5.4.3 View-based Rewriting Algorithm

We now describe our rewriting algorithm (Algorithm 7). As stated in Propo-
sition 5.4.1, to find rewritings of v it suffices to find all embedded attribute set
covers (EACs) of v, and to build an efficient rewriting from each such EAC.

106 CHAPTER 5. DELTA: SCALABLE VIEW-BASED PUBLISH/SUBSCRIBE

Algorithm 6: Trie-based EG Construction Algorithm
Input : View set V
Output: EG of V

1 E ← ∅; EG← (V,E) // Initially empty edge set
2 T ← createTrie(V) // Create the trie for V
3 foreach v ∈ V do

//Retrieve from T all u s.t. labels(u) ⊆ labels(v) and add edges
corresponding to embeddings

4 foreach u ∈ {T.lookUp(v)} do
5 if u embeds into v then E ← E ∪ {(u, v)}

6 return EG

Algorithm 7: Cover-based greedy rewriting (CGR)
Input : View v, EG eg = (Veg, Eeg), max. number k of rewritings
Output: List with at most k rewritings of v based on the views of eg
// Get from eg all views embeddable in v

1 V ← {ui | (ui, v) ∈ Eeg}
2 rwList← ∅ // List with rewritings for v
3 visited← ∅ // Set of already visited EACs

4 if ∃ attribute att ∈ v, not covered by any u ∈ V then return ∅
5 crtEAC ← ∅ // Current EAC view set
6 backtrackFindEAC(v, V, crtEAC)
7 return rwList

8 Procedure backtrackFindEAC(v, V, crtEAC)
9 if crtEAC covers all v’s attributes and crtEAC /∈ visited then

10 visited← visited ∪ {crtEAC}
// Get rewriting from EAC and add to rwList

11 rwList.add(EACtoRw(crtEAC))
12 if (rwList.size = k) then return

// Get views not yet used in crtEAC
13 remainV iews← V \ crtEAC
14 if remainV iews = ∅ then return
15 remainV iews← sort(altV iews) in desc. order of interest i
16 foreach valt ∈ altV iews do
17 crtEAC ← crtEAC ∪ {valt} backtrackFindEAC(v, V, crtEAC)
18 crtEAC ← crtEAC \ {valt}

The novelty of our algorithm is that it generates solutions incrementally on-
demand, a useful feature given that we only consider k alternative rewritings for
each subscription (recall Section 5.3.1). Since all rewritings may never be devel-
oped, Algorithm 7 strives to develop the most promising rewritings first, that is
those whose evaluation utilization is likely to be low. This is done by ordering

5.4. VIEW-BASED REWRITING 107

candidate views in decreasing order of their interest w.r.t. rewriting (covering) a
given view v: the more v attributes currently uncovered by a partial rewriting are
covered by a view v′, the more interesting it is to add v′ to (join it with) the respec-
tive partial rewriting. Clearly, as views are added to the rewriting, view interests
have to be recomputed. The algorithm is based on depth-first exploration and
backtracks to move from one rewriting to the next one.

First, the algorithm uses the EG to retrieve the view set V containing only the
views embeddable in v. The EAC exploration starts with an empty EAC, and at
each point the highest-interest view not already in the current EAC is added to it.
We compute the interest of adding a candidate view u to the EAC, given that a
subset of V has already been selected, by counting how many attributes of v not
covered by the EAC views, are covered by the candidate u.

For example, when rewriting view v /aID,cont/bID,cont and considering a candi-
date view u1 = /aID/bID,cont, the interest of u1 is 3, since u1 covers the attribute
ID in two nodes of v as well as b.cont. Once u1 is selected, the interest of another
candidate view u2 = /aID,cont/bID is 1, since the only attribute of v not previously
covered by u1 and covered by u2 is a.cont. When several views have the same
interest, the tie is broken by picking the one that covers attributes from the largest
number of v nodes. Once an EAC for v is found, we transform it to a rewriting
expression and add it to the list of rewriting solutions.

In the worst case, Algorithm 7 will develop all subsets of V . However, in
practice, since we only seek k rewritings, the number is typically much less, as we
verified through our experiments.

Rewriting Minimization Algorithm 7 may generate rewritings which include re-
dundant views. These views may be removed from the rewriting while leaving
it still equivalent to the target view. Non-minimality is due to the greedy nature
of Algorithm 7: after a view u was included in a rewriting, another set of views
{u1, u2, . . . , uk} may be added such that, together, the views in the set cover all
attributes that u was selected for. This makes u redundant although it was not
when initially added. To build efficient (non-redundant) rewritings, we minimize
them in a post-processing fashion as in [TYÖ+08]: remove a random view from a
non-minimal rewriting, then check if this has compromised the rewriting. If yes,
the view is put back in the rewriting, another view is removed, etc.

5.4.4 Generality of our Approach

The core concepts and framework of Delta, discussed in Section 5.2, are inde-
pendent of the concrete underlying data model, query language and query rewrit-
ing algorithm. While Delta is currently implemented and deployed for XML sub-
scriptions, it can be easily adapted to another data model and subscription lan-
guage. We briefly discuss the rewriting-related components needed to do so.

First, an algorithm for equivalent view-based query rewriting is needed, such
as proposed in the literature, e.g., for relational [PH01] or XML data [TYÖ+08,
MKVZ11]. In particular, the set-cover-based algorithm described above can be

108 CHAPTER 5. DELTA: SCALABLE VIEW-BASED PUBLISH/SUBSCRIBE

used as-is if we model subscriptions simply as key-value pairs, e.g., “topic=sport
and location=England”, as considered in many publish-subscribe data manage-
ment settings such as e.g., [CDTW00]. We rely on this algorithm to build the
RG.

Second, while building the EG is optional, for many-view settings it is likely to
significantly improve performance, by limiting the view set input to the rewriting
algorithm. The embedding criterium we used to build the EG has natural counter-
parts in other data models, e.g., the classical containment mappings [CM77]. If
these are not implemented or their computational cost is high, the EG can be ap-
proximated using any non-lossy pruning. For instance, if one considers relational
queries as subscriptions, we could add an edge (v1, v2) in the EG as soon as the
tables in v1 are a subset of those in v2, and for each table, the constants used in
selections on that table in v1 are used in selections over the same tables in v2.

5.5 Experimental Evaluation

In this Section we present the experimental evaluation of our system. We de-
scribe our setup in Section 5.5.1, and discuss the construction of EGs and RGs in
Section 5.5.2. Section 5.5.3 studies the utilization-based selection of CFGs through
ILP, while Section 5.5.4 discusses how to improve the latency of such CFGs. Fi-
nally, Section 5.5.5 presents the deployment of Delta in a wide area network.

5.5.1 Experimental Setup

We implemented all our algorithms in Java, except for the utilization based
CFG selection algorithm (Section 5.3.3), for which we made use of the Gurobi ILP
solver [Gur13]. We relied on YFilter [DAF+03] to generate our views, based on
the XMark DTD [SWK+02].

We have generated two view sets, V1 and V2 of 100,000 views, the characteris-
tics of which are shown in Table 5.2. For V1, we opted for unique views in order
to examine the scalability and efficiency of our algorithms in the absence of trivial
rewritings (where equivalent views rewrite one another) and force our utilization
and latency optimizations algorithms to consider more complicated CFGs (rather
than chains of equivalent views that can be easily optimized).

For V2 we opted for only 31,925 unique views, whereas the rest are duplicates.
This view set is chosen so as to observe the impact of duplicate views in the shape
of the RGs and CFGs that are generated by our algorithms.

All our experiments ran on an 8-core server (2 CPUs, Intel Xeon @2.93GHz),
with 16GBs of RAM and running CentOS Linux 6.4.

5.5. EXPERIMENTAL EVALUATION 109

View Set Metric Value
Number of views (unique) 100,000
Avg. number of predicates per view 0.72
Avg. number of predicates per node 0.11
Avg. number of nodes per view 6.13
Avg. number of return nodes per view 2.52
EG Metric Value

V1

Number of edges 10,592,053
Number of edges deleted to remove cycles 18,665
% of views in which at least one view is embedded 99.95
Generation time (sec) 452

V2

Number of edges 2,033,296
Number of edges deleted to remove cycles 4,692
% of views embedded by at least another view 100%
Generation time 56 sec
RG Metric Value

V1

Number of rewritings (∧ nodes) 2,692,139
Number of edges 8,589,822
Generation time (sec) 127
Views rewritten by other views 94,835
Avg. number of views used in a rewriting 2.15
Avg. |Eout| 57.9

V2

Number of rewritings (∧ nodes) 2,587,687
Number of edges 6,527,422
Generation time 80 sec
Views rewritten by other views 96,736
Avg. number of views used in a rewriting 1.48
Avg. |δout| 38.3

Table 5.2: Experiment settings and EG/RG statistics.

5.5.2 EG and RG Generation

We have generated the EG using Algorithm 6, then removed cycles from it,
and finally generated the RG using Algorithm 7. Algorithm 7 was instructed to
generate no more than k = 30 rewritings for each view. The sizes and generation
times for the EG and RG appear respectively in the middle and bottom of Table 5.2.
Every time Algorithm 7 finds a rewriting, we create the corresponding ∧ node,
with an outgoing edge toward the rewritten view, and with an incoming edge from
each view used in the rewriting. Table 5.2 shows that the number of rewritings
(and thus, the size of the unrestricted RG) is very high, more than 2.5 millions.

5.5.3 CFG Utilization Optimization Through ILP

In the experiments involving the view set V1, we have set the upper bound
of the data source as Bout

D = 6, 198, that is, the number of views that cannot

110 CHAPTER 5. DELTA: SCALABLE VIEW-BASED PUBLISH/SUBSCRIBE

Bout 30 50 100 ∞

V1

% rewritten views 94.3 94.7 94.7 94.7
CFG utilization (×1013) 3.49 3.32 3.31 3.13
Average views per rewriting 1.77 1.78 1.79 1.8

V2

% rewritten views - - 96.7 96.7
CFG utilization (×1013) - - 1.93 1.93
Average views per rewriting - - 1.24 1.24

Table 5.3: Impact of Bout on the selected CFGs.

be rewritten by other views (see Table 5.2) plus a 20% margin. The respective
bound for the view set V2 was set to Bout

D = 3, 916. We did this in order to push
to the data source D the least possible load, while giving the ILP solver some
margin to assign some extra views to D if needed. We have also set a common
Bout = {30, 50, 100,∞} for all views (to see the effect of bounds on the shape of
the resulting CFGs).

The Gurobi solver was then used to select utilization-optimal CFGs. A first
observation was that the running time decreases as Bout increases, from about four
minutes for Bout = 30 to less than two minutes for Bout =∞. The reason is that a
small Bout corresponds to highly restricted settings where the solver must search
longer in order to find acceptable solutions.

Table 5.3 depicts the percentage of views rewritten using other views (and not
filled from the data source D) in the CFGs returned by the ILP solver, as well as
the utilization of the CFGs and the average number of views that take part in the
rewritings. First, notice that even when we keep the load on the views under tight
control (Bout = 30), we achieve a high degree of off-loading (94.3% for V1 and
96.7% for V 2) from the data publisherD. Moreover, as can be seen, by decreasing
Bout in V1, the utilization of the CFG increases (due to tighter constraints), while
the number of views participating in a rewriting decreases (since each view is
allowed to serve less views).

In Table 5.3 we can see that the cost of CFGs for V2 are considerably lower
than the ones of V1. This is due to the fact that the cost of serving one view
from (another) identical view, is very low compared to performing joins that are
expensive. Note also the difference in the average views per rewriting: in V1
almost 1.8 views in average are used to serve another view, while for in V1, this
number is considerably lower (1.24).

Finally, we observed that the solver could not generate CFGs (i.e. no configura-
tion was feasible) for the duplicate-rich view set V2 for Bout < 100. This happened
because some of the views in V2 were too popular. Assigning all other views that
depended on the popular one could not be done without breaking the bound Bout

that was given to the solver and they had to be assigned to the data source. Since
there was also a relatively low bound on the data source (Bout

D = 3, 916) that had
to also be respected, the ILP was infeasible.

5.5. EXPERIMENTAL EVALUATION 111

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

10

20

30

40

Time (sec)

La
te

nc
y

R
ed

uc
ti

on
(%

)

Bout = 45

Bout = 75

Bout = 150

Bout = ∞

Figure 5.6: Latency reduction while running LOGA for V1.

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

10

20

30

40

50

Time (sec)

La
te

nc
y

R
ed

uc
ti

on
(%

)

Bout = 150

Bout = ∞

Figure 5.7: Latency reduction while running LOGA for V2.

This experiment showed that in case a view set contains some very popular
views, one has to increase the bound of the data source Bout

D . We have experi-
mented further in that direction and we saw that increasing the bound of the data
source to Bout

D = 6000 (almost double the previous bound), the solver could finally
generate CFGs for Bout = 50 but not for Bout = 30.

5.5.4 Greedy CFG Latency Optimization

We now study the performance of Algorithm 5 (LOGA, Section 5.3.4), applied
on CFGs obtained through ILP optimization. Our initial experiments did not show
significant latency improvement, because the ILP-selected CFGs exploited most of
the freedom we gave them (almost every view was feeding Bout other views).
Hence, there was very little leeway for LOGA to make changes. To circumvent this
problem, we allowed LOGA to use as bound 1.5 times the Bout given to the ILP
solver. Thus, where the ILP solver had Bout = 30, 50, 100, LOGA used 45, 75, 150,
respectively.

112 CHAPTER 5. DELTA: SCALABLE VIEW-BASED PUBLISH/SUBSCRIBE

N
um

be
r

of
V

ie
w

s
pe

r
Le

ve
l(

lo
gs

ca
le

)
101
102
103
104 Bout = 30/45

101
102
103
104 Bout = 50/75

101
102
103
104 Bout = 100/150

101
102
103
104 Bout = ∞

101
102
103
104 Bout = 100/150

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

101
102
103
104 Bout = ∞

Utilization-optimized CFG Latency-optimized CFG

Figure 5.8: Distribution of views across CFG levels for view sets V1 (top 4) and V2
(bottom 2).

Latency Optimization Figure 5.6 depicts the latency improvement as a function
of the LOGA running time. We see that LOGA is very effective, achieving a 43%
reduction with respect to the latency of the CFG returned by the initial ILP solver.
Moreover, such savings are obtained within 150-200 seconds. They stabilize when
the data propagation paths to all the high-impact views have been altered and
there is not much room for further optimization.

Similarly, Figure 5.7 depicts the latency improvement for the view set V2. We
see that in this case LOGA is more effective, achieving a 50% reduction with respect
to the latency of the CFG returned by the initial ILP solver. This is explained by
the fact that the duplicates in the graph leave a room for further improvement.

Distribution of Views into Levels Figure 5.8 depicts the distribution of views into
levels in the CFGs for varying Bout, as produced (i) by the ILP solver, and (ii) after
LOGA optimization. Note the logarithmic vertical axis. We see that the latency-
optimized CFGs have less than 2/3 of the number of rewriting levels of the CFGs
produced by ILP. Moreover, in the latency-optimized CFGs, most of the views lie
in levels 1-6, leaving approx. only 1.5% of the views on levels 6-12. Thus, most
views are only 4-5 hops away from the data source. This “flattening of rewriting

5.5. EXPERIMENTAL EVALUATION 113

N
um

be
r

of
V

ie
w

s
pe

r
Le

ve
l(

lo
gs

ca
le

)
101
102
103
104 Bout = 5/7

101
102
103
104 Bout = 10/15

101
102
103
104 Bout = 30/45

101
102
103
104 Bout = 50/75

101
102
103
104 Bout = 100/150

1 3 5 7 9 11 13 15 17 19 21 23 25

101
102
103
104 Bout = ∞

Utilization-optimized CFG Latency-optimized CFG

Figure 5.9: Distribution of views across deployed CFG levels.

levels” is an expected result of LOGA, since the more levels the data passes through
from the publisher to a view, the more latency is added.

Utilization vs. Latency Although one may expect latency optimization (that
reached 50%) to re-increase utilization, the increase was very moderate (5-7%).
LOGA is only making greedy incremental fine-tuning over utilization-optimized
CFGs (whose bounds were already attained), and therefore, the changes in the
graph could not significantly change utilization.

5.5.5 Experiments in a WAN Deployment

We deployed Delta’s algorithms on top of the distributed query execution en-
gine of ViP2P [KKMZ12]. We implemented a full set of continuous physical op-
erators (structural joins, selections, buffers etc.) mostly based on the physical
operators of ViP2P. We report here on experiments we carried deploying Delta in
a WAN.

Infrastructure We conducted our experiments in the Grid5000 infrastructure
[Gri], using 300 machines distributed over nine major cities across France and

114 CHAPTER 5. DELTA: SCALABLE VIEW-BASED PUBLISH/SUBSCRIBE

5 10 30 50 100 ∞
26 43 33 33 39 34

1,607
1,382 1,303 1,290 1,288 1,268

3,717

3,340 3,292
3,586

3,059

4,764

Bout

V
ie

w
la

te
nc

y
(m

s)

5 10 30 50 100 ∞
22 45 42 61 29 27

1,344
1,196 1,167 1,154 1,168 1,161

4,197

3,242

2,582 2,649

3,407

4,563

Bout

Min

Avg

Max

Figure 5.10: View latency for utilization-optimized CFGs (left) and latency-
optimized CFGs (right).

Luxembourg. The hardware of Grid5000 machines varies from dual-core ma-
chines with 2GBs of RAM to 16-core machines with 32GBs of RAM. This hetero-
geneous hardware distribution is likely to occur with real settings as subscribers
have varied-capacity machines.

Views and Documents We have generated a set of 10,000 views, along with a
set of 200 small (10-40KB) XMark [SWK+02] documents, in a way such that each
document matches almost all of the views. Unlike our previous experiment, this
view set has only 3,000 unique views, which is more representative of real-life
scenarios where some subscription topics are popular.

We have created the corresponding EG and RG and invoked the ILP solver to
generate utilization-optimized configurations for Bout ∈ {5, 10, 30, 50, 100,∞} and
Bout
D = 72. The resulting CFGs were optimized for latency with the LOGA Algorithm

with bounds {7, 15, 45, 75, 150,∞}.
The distribution of views into levels is depicted in Figure 5.9. A first obser-

vation is that in the presence of duplicate views, the latency-optimized CFGs can
have less than half of the levels of their utilization-optimized counterparts. A
CFG with duplicate views is easier to optimize through the LOGA Algorithm since
equivalent views may be served from one another.

We now move to presenting our results from deploying the generated CFGs. To
characterize the performance of Delta, we have measured two important metrics,
namely the observed latency and the document delivery time.

Observed View Latency We measured the latency of a view v for a document
d as the time elapsed between: (i) the moment when the first tuple of d leaves
the data source, and (ii) the instance when the last tuple of d reaches the view
v. Note that in the observed view latency we do not include the time needed to
extract the level 1 view tuples from a document. We do not include this 4 since this

4. For completeness: our view matcher took an average of 100ms to extract from each docu-
ment the tuples for the 72 first-level views.

5.5. EXPERIMENTAL EVALUATION 115

5 10 30 50 100 ∞

2,557

2,241
2,064 2,095 2,043

2,172

3,020

2,643

2,410 2,433 2,408
2,614

3,717

3,340 3,292

3,586

3,059

4,764

Bout

D
oc

um
en

t
D

el
iv

er
y

T
im

e
(m

s)

5 10 30 50 100 ∞

1,892 1,875
1,749 1,671

1,778 1,813

2,305 2,253
2,101 2,038

2,126

2,454

4,197

3,242

2,582 2,649

3,407

4,563

Bout

Min

Avg

Max

Figure 5.11: Document delivery time for utilization-optimized CFGs (left) and
latency-optimized CFGs (right).

extraction step is not the main scope of the paper and has been studied in other
works [DAF+03, HDG+07].

Figure 5.10 depicts the average observed view latency for all pairs of views
and documents in our CFGs. A first observation is that on average, views get
their results in just 1.6 seconds after a document is published. This translates
to a throughput of many thousands of subscriptions served per second, with a
data source having to serve only 0.7% (72 out of 10.000) of the views. This
demonstrates how Delta makes it possible to serve large numbers of subscribers
using very little publisher computing resources.

Our second remark regards the minimum/maximum latencies for Bout = 5
in utilization-optimized CFGs. Some views in the network receive their results
extremely fast (30ms) while some others considerably slower (3.7s). This is an
inherent feature of Delta: views that are close to the data source receive their data
faster than the ones that reside in deeper levels.

The LOGA algorithm reduces the observed latency of views up to 20% (Bout =
5) compared to the utilization-optimized CFGs. This also shows that our latency
estimation models (used by our algorithms) are quite accurate.

An interesting phenomenon is the following: in the utilization-optimized CFG
where Bout = ∞ we notice a very large increase in the maximum latency (4.7s)
while the CFG is not too deep (13 levels) compared to other CFGs that showed
lower latency. This is explained by the fact that when a view serves a very large
number of other views, it can be overloaded and the data processing/transmission
throughput is reduced. This shows the importance of the bounds Bout in Delta:
for optimal performance, Bout must be set in the “sweet spot” between values too
large (to avoid overloading) and too low (to avoid very deep CFGs). In practice,
a simple test can be performed at each subscriber machine to tailor its Bout to its
observed hardware performance.

116 CHAPTER 5. DELTA: SCALABLE VIEW-BASED PUBLISH/SUBSCRIBE

Document Delivery Time For a view v and a document d that matches v, we term
document delivery time, or simply DDT, the total time needed for all the matching
tuples of document d to reach the view v. For a set of views V , the DDT is measured
as the interval between: (i) the moment when the first tuple of the document d
leaves the data source and (ii) the instance when the last tuple of the document d
has reached the slowest view v ∈ V . In other words, this metric captures the time
it takes for a document to reach its slowest interested view.

Figure 5.11 shows the average, minimum and maximum DDT over all pub-
lished documents in our experiment. In general, in all CFGs, a document is de-
livered to all views in the network, in an average of 2-2.5 seconds. Note that the
maximum observed latency coincides with the maximum DDT (see Figures 5.10
and 5.11) as the slowest view in the network actually defines the DDT. Thus, we
observe the same phenomenon as in the observed latency: DDT slows down for
the extreme Bout = {5,∞} values.

5.5.6 Experiment Conclusion

Our experiments have demonstrated the efficiency and effectiveness of Delta’s
multi-level dissemination approach. With respect to efficiency, for 100,000 dis-
tinct subscriptions, the full graph generation, optimization for utilization and then
latency took less than 13 minutes. As for effectiveness, the configurations re-
tained have low cost scores. This is confirmed by the WAN deployment of 10,000
subscriptions, which showed a high message delivery throughput and low latency:
documents are propagated to 10,000 subscriptions, which are fed with data within
1.5 seconds on average.

5.6 Related Works

Our work belongs to the class of content-based publish subscribe systems, dis-
seminating to users the results of their specified subscriptions over a stream of
published data. This work is related to several themes of existing works.

Filtering Systems A large part of the literature addresses the problem of optimiz-
ing the publisher so that it handles the filtering of incoming data for very large
numbers of subscribers.

YFilter [DAF+03] stands out as a widely-known system for XML publish-
subscribe. It is able to feed many XPath 1.0 subscriptions very efficiently by
matching them simultaneously against documents through a single automaton.
NiagaraCQ [CDTW00] relies on multi-query optimization for continuous queries,
taking advantage of the similarity of subscriptions in order to share operators
during evaluation. Similarly, [HDG+07] addressed the same problem but for a
more expressive subscription language, supporting joins over multiple documents
while [TATV11a, TATV11b] use methods of multi-query optimizations for continu-
ous queries over RSS feeds. Finally, [TRP+04] proposes a pub/sub system where
the evaluation of subscriptions is done inside a relational database.

5.7. FUTURE WORK 117

The above do not consider distributed data dissemination. Instead, they focus
on optimizing the publisher task, to support very large numbers of subscribers.
Our work can be seen as complementary since we focus on the design of a logical
overlay network (CFG), that exploits the subscribers in order to scale up. Any
efficient filtering at the publisher can be adopted in our setting.

Distributed Publish/Subscribe Onyx [DRF04] connects multiple publishers and
subscribers by employing multiple YFilter instances running on connected brokers.
Recently, FoXtrot [MK12] has distributed YFilter automata on top of a DHT net-
work. Other DHT-based pub/sub systems are, e.g., [CIKN04, GSAA04]. Closer to
our work, SemCast [Pap05] leverages commonalities between subscriptions and
creates logical channels between brokers and subscribers to form multicast trees
of low utilization and latency. However, the system relies on a network of brokers,
and the subscribers do not help in the dissemination of data. Finally, [TBF+03]
builds one multicast tree per broker aiming at redundancy and fault tolerance.

Contrariwise, in [CF05], every peer can forward messages to its neighbors if
the message matches its own interests. Peers are organized in an hierarchy tree
based on subscription similarity. However, by design, the peers do not know the
subscriptions of their neighbors, and as a result, their routing protocol allows for
false positives (peers may receive messages which do not interest them).

In contrast with these works, Delta builds multi-level dissemination networks
involving the subscribers, leveraging query rewriting to determine whether some
subscriptions can be used to compute results of other subscriptions. One of the
consequences unique to Delta is the ability to combine the results of multiple sub-
scriptions in order to serve another one.

View-based Data Management As explained in Section 5.4.4, any efficient view-
based rewriting algorithm (e.g., [PH01]) can be used instead of our Algorithm 7.
View maintenance has been investigated in the centralized context of data ware-
housing [SF90, RSS96]. In the ViP2P project, incremental algebraic techniques
for maintaining materialized views have been described in [BGMS11, BGMS13].
Finally in [DLZ05], the authors consider “stacked” views, specified as queries
over other defined views, study their maintenance and the efficient evaluation
of queries using such views; these resemble our multi-level configurations, but
in [DLZ05] the connections between views are given, whereas we choose them for
performance through our algorithms.

5.7 Future Work

Delta, considers complete rewritings, that is, subscriptions are either served
from the data publisher or solely from other subscriptions. When the system
starts to run and the number of subscribers is limited, subscriptions do not overlap
enough to create lots of rewriting opportunities. In that case, Delta will fail to
rewrite all subscriptions based solely on other subscriptions and the publisher will
have to serve them all individually. In that case, the publisher will be overloaded

118 CHAPTER 5. DELTA: SCALABLE VIEW-BASED PUBLISH/SUBSCRIBE

or even refuse to serve some of the subscriptions.
A possible solution to this overloading would be to use partial rewritings. A par-

tial rewriting would allow a subscription to be served partly by other subscriptions
and partly by the publisher. This way, the load on the publisher can be reduced
since some of the processing effort is pushed to other subscribers.

Supporting partial rewritings in Delta’s algorithms is relatively straightforward:
given an appropriate rewriting algorithm, the rewritability graph can be easily
enriched with partial rewritings. In turn, the enriched rewritability graph can be
used by our algorithms without any other change.

In contrast, in order to support partial rewritings a publisher should be slightly
modified. Instead of materializing only level 1 views of a given configuration, the
publisher would have to also store and serve the extra views for the evaluation of
partial rewritings. To sustain the extra effort on the data publisher, one could use
the view selection algorithm that was presented in Chapter 3. The possibility of
supporting partial rewritings in Delta and selecting custom materialized views for
the publisher is left for future work.

5.8 Summary

In this chapter we considered the problem of scaling up content-based publish/
subscribe systems under resource constraints (such as finite CPU and network ca-
pacity) by off-loading some of the data publisher’s effort on the subscriber sites.
This is achieved by organizing subscriptions in a rewritability graph which mate-
rializes the ways in which one subscription could be served from others, through
view-based rewriting. We provide a novel two-step algorithm for organizing the
views in a network minimizing a combination of resource utilization and data dis-
semination latency. First, we express the utilization minimization problem as a
linear program and solve it exactly; as we show, latency cannot be included in the
ILP formulation due to its non-linear nature. We reduce latency in a second step
based on the result obtained from the ILP solver. Our configuration choice algo-
rithm scale well to 100.000 unique subscriptions, whereas in a WAN deployment,
Delta succeeds in filling in 10.000 subscriptions with a latency of under 2 seconds.

Acknowledgments We would like to thank Cédric Bentz for his valuable help
and discussions on the ILP modeling and Yannis Manoussakis for his guidance in
proving the NP-Hardness of our problem.

Chapter 6

Conclusion and Future Work

Vastly increasing quantities of Web data is published every day, and this growth
shows no signs of stopping. What is more, a large percentage of this data is
published in XML format. Thus, the urgency for new systems in the area of data
management that will enable scalable distributed data management has never
been greater. In this thesis we have focused on the (distributed) management of
XML data based on techniques that employed materialized views.

6.1 Thesis Summary

In this thesis we focused on three problems that we summarize below.

Materialized View Selection for XQuery Workloads considers the problem of
choosing the best views to materialize within a given space budget in order to
improve the performance of a query workload.

— This work is the first to formalize and address view selection problem for
queries and views expressed in a rich subset of XQuery.

— We analyzed the space of potential candidate views and present several
effective candidate pruning criteria.

— We proposed ROA, a heuristic algorithm based on state search that uses
a set of transformations to navigate in the search space of candidate view
sets.

— We experimentally demonstrated the superiority or the ROA algorithm,
compared to the state of the art.

Distributed View-based Web Data Dissemination We presented the ViP2P plat-
form, a distributed platform for sharing XML documents based on a structured
P2P DHTs.

— ViP2P uses distributed materialized XML views, defined by arbitrary XML
queries, filled in with data published anywhere in the network, and ex-
ploited to efficiently answer queries issued by any network peer. More
specifically:

119

120 CHAPTER 6. CONCLUSION AND FUTURE WORK

— We presented the complete architecture of ViP2P enabling views indexing,
XML data publication, view materialization and finally query evaluation
over distributed materialized views.

— We have fully implemented our architecture, on top of the FreePastry [Fre]
P2P infrastructure. and presented a comprehensive set of experiments per-
formed in a WAN, demonstrating ViP2P’s superiority compared to the state
of the art.

— The ViP2P platform scaled to several hundreds of peers and hundreds of
GBs of XML data, both unattained in previous works.

Delta: Scalable View-based Publish/Subscribe We presented Delta, a novel ap-
proach for scalable content-based publish/ subscribe. Delta achieves scalability
by off-loading subscriptions from the publisher, and leveraging view-based query
rewriting to feed these subscriptions from the data accumulated in others. The
main contributions that Delta brings to the literature are:

— Delta is the first pub/sub system that considers that uses distributed mate-
rialized views for the dissemination of data.

— We presented a novel algorithm for organizing views in a multi-level dis-
semination network, exploiting view-based rewriting, using integer linear
programming capabilities to scale to many views, respect capacity con-
straints, and minimize latency.

— We presented LOGA, a heuristic algorithm that works over given configura-
tions and optimizes them for latency.

— We provided a full implementation of our architecture and we presented
extensive experiments validating the efficiency and effectiveness of our al-
gorithms. We confirmed our algorithms in practice, through a large deploy-
ment in a WAN.

6.2 Perspectives

Materialized View Selection for XQuery Workloads We plan to extend our prob-
lem definition and include the view maintenance costs as well as storage costs dur-
ing the state search. In that case, more algorithms utilizing our transformations
could be devised.

Our algorithms could incorporate query templates as in [MS05, YLH03], group-
ing together similar queries under a single representative, to support larger work-
loads. We also plan to investigate the extension of the query template mining
approach of [YLH03], focused on single-view XPath rewritings, to our more com-
plex language and query rewriting framework.

Finally, since XML data management highly concerns distributed databases,
an obvious next step for our view selection algorithms would be to consider dis-
tributed databases for which views should be selected. In that case, the problem
of view selection for a distributed network of sites becomes even more complex:
one has to incorporate view placement methods to our algorithms as well.

6.2. PERSPECTIVES 121

Delta: Scalable View-based Publish/Subscribe We plan to demonstrate the ap-
plicability of our configuration algorithms to a non-XML data model, for instance
relational or RDF, and plug into our architecture other rewriting algorithms such
as [PH01].

So far, we assumed that the views included in a configuration can be only
the ones requested by the subscribers. We are interested in the inclusion of a
view selection method (like the one of Chapter 3) that could modify existing or,
add extra intermediate views (some form of “broker” views) in a configuration in
order to optimize it for lower overall costs.

MapReduce-based Web Data Processing Since 2004 and especially over the
duration of this thesis, interest has been growing in processing of data through
massively parallel frameworks such as MapReduce [DG04] and related platforms
and implementations [Apa, DIS, BEH+10]. At the same time, enterprises are in-
creasingly shifting away from deploying analytical databases on high-end propri-
etary machines and systems, and moving towards cheaper, lower-end hardware
[TSJ+09].

MapReduce-based systems are better suited due to their scalability, fault tol-
erance, and flexibility to handle un- or semi- structured data. Moreover, in tra-
ditional DBMS, data needs to first be loaded and indexed before it is query-able.
However, real-time analytics and the very nature of data publication on the Web
(continuously grows and old data does not change) dictate that data should be
query-able in an online, continuous and incremental fashion. Previous research
has focused on the incremental processing of data in MapReduce environments
without the need of loading all data in advance [LMD+12] and for reusing com-
putations [BWR+11, PBYI09].

For all the above reasons, we expect that the efficient large-scale processing of
Web data in massively distributed environments, will attract significant interest in
the near future.

Traditional database operators such as joins have been “ported” and optimized
for execution in Map-Reduce environments [AU10, OR11], bringing MapReduce
one step closer to database systems. This opens the the way for materialized views
in MapReduce environments: materialized views can be used as a means of stor-
ing and reusing intermediate results of query computations. To that direction,
one could analyze MapReduce programs and decide where and how to incorpo-
rate materialized views that would be incrementally updated whenever new data
arrives.

Bibliography

[Abe11] Karl Aberer. Peer-to-peer data management. Synthesis Lectures on
Data Management, Morgan & Claypool Publishers, Volume 3:p.87–94,
2011.

[ABMP07] Andrei Arion, Véronique Benzaken, Ioana Manolescu, and Yannis Pa-
pakonstantinou. Structured materialized views for XML queries. In
VLDB, 2007.

[ABMP08] Andrei Arion, Angela Bonifati, Ioana Manolescu, and Andrea
Pugliese. Path Summaries and Path Partitioning in Modern XML
Databases. World Wide Web Journal, 2008.

[ACN00] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Auto-
mated selection of materialized views and indexes in SQL databases.
In VLDB, 2000.

[AKJP+02] Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, Yuqing Wu, Nick
Koudas, and Divesh Srivastava. Structural joins: A primitive for effi-
cient XML query pattern matching. In ICDE, 2002.

[AMM05] Loredana Afanasiev, Ioana Manolescu, and Philippe Michiels. Mem-
BeR: A Micro-benchmark Repository for XQuery. In EXPDB, 2005.

[AMP+08] Serge Abiteboul, Ioana Manolescu, Neoklis Polyzotis, Nicoleta Preda,
and Chong Sun. XML processing in DHT networks. In ICDE, 2008.

[AMR+98] Serge Abiteboul, Jason McHugh, Michael Rys, Vasilis Vassalos, and
Janet L. Wiener. Incremental maintenance for materialized views
over semistructured data. In VLDB, 1998.

[AMR+12] Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine
Rousset, and Pierre Senellart. Web Data Management. Cambridge
University Press, 2012.

[Apa] Apache Foundation. The Apache Hadoop Project.
http://hadoop.apache.org/.

[AU10] Foto N Afrati and Jeffrey D Ullman. Optimizing joins in a map-reduce
environment. In EDBT, pages 99–110. ACM, 2010.

[AYCLS02] Sihem Amer-Yahia, SungRan Cho, Laks V. S. Lakshmanan, and Di-
vesh Srivastava. Tree pattern query minimization. VLDB J., 11(4),
2002.

123

124 BIBLIOGRAPHY

[BC06] Angela Bonifati and Alfredo Cuzzocrea. Storing and retrieving XPath
fragments in structured P2P networks. Data Knowl. Eng., 59(2),
2006.

[BCD+10] Anastasia Bezerianos, Fanny Chevalier, Pierre Dragicevic, Niklas
Elmqvist, and Jean-Daniel Fekete. Graphdice: A system for explor-
ing multivariate social networks. In Computer Graphics Forum, vol-
ume 29, pages 863–872. Wiley Online Library, 2010.

[BCH+06] Kevin S. Beyer, Roberta Cochrane, M. Hvizdos, Vanja Josifovski,
Jim Kleewein, George Lapis, Guy M. Lohman, Robert Lyle, Matthias
Nicola, Fatma Özcan, Hamid Pirahesh, Normen Seemann, Ashutosh
Singh, Tuong C. Truong, Robbert C. Van der Linden, Brian Vickery,
Chun Zhang, and Guogen Zhang. DB2 goes hybrid: Integrating na-
tive XML and XQuery with relational data and SQL. IBM Systems
Journal, 45(2):271–298, 2006.

[BDB] Oracle Berkeley DB Java Edition.
http://www.oracle.com/technology/products/berkeley-
db/je/index.html.

[BEH+10] Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker
Markl, and Daniel Warneke. Nephele/PACTs: A Programming Model
and Execution Framework for Web-Scale Analytical Processing. In
ACM symposium on Cloud computing, New York, NY, USA, 2010.
ACM.

[BGMS11] Angela Bonifati, Martin Goodfellow, Ioana Manolescu, and
Domenica Sileo. Algebraic incremental maintenance of XML views.
In EDBT, 2011.

[BGMS13] Angela Bonifati, Martin Goodfellow, Ioana Manolescu, and
Domenica Sileo. Algebraic incremental maintenance of XML views.
ACM TODS, 2013.

[BGvK+06] Peter A. Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold,
Jan Rittinger, and Jens Teubner. MonetDB/XQuery: a fast XQuery
processor powered by a relational engine. In SIGMOD Conference,
pages 479–490, 2006.

[BK08] Michael Benedikt and Christoph Koch. Xpath leashed. ACM Comput.
Surv., 41(1), 2008.

[BK09a] Michael Benedikt and Christoph Koch. From XQuery to relational
logics. ACM Trans. Database Syst., 34(4), 2009.

[BK09b] Michael Benedikt and Christoph Koch. XPath leashed. ACM Comput.
Surv., 41, 2009.

[BKN09] Nikhil Bansal, Rohit Khandekar, and Viswanath Nagarajan. Additive
guarantees for degree-bounded directed network design. SICOMP,
2009.

BIBLIOGRAPHY 125

[BKS02] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal
XML pattern matching. In SIGMOD, 2002.

[BMCJ04] Angela Bonifati, Ugo Matrangolo, Alfredo Cuzzocrea, and Mayank
Jain. XPath lookup queries in P2P networks. In WIDM, 2004.

[BMKL02] Denilson Barbosa, Alberto Mendelzon, John Keenleyside, and Kelly
Lyons. ToXgene: a template-based data generator for XML. In SIG-
MOD. ACM, 2002.

[BOB+04] A. Balmin, F. Ozcan, K. Beyer, R. Cochrane, and H. Pirahesh. A frame-
work for using materialized XPath views in XML query processing. In
VLDB, 2004.

[BSX] BaseX. The XML database. http://basex.org/.

[BWR+11] Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umut A
Acar, and Rafael Pasquin. Incoop: Mapreduce for incremental com-
putations. In ACM Symposium on Cloud Computing, 2011.

[CC10] Ding Chen and Chee-Yong Chan. ViewJoin: Efficient view-based eval-
uation of tree pattern queries. In ICDE, pages 816–827, 2010.

[CDO08] Bogdan Cautis, Alin Deutsch, and Nicola Onose. XPath rewriting
using multiple views: Achieving completeness and efficiency. In
WebDB, 2008.

[CDTW00] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. Nia-
garacq: A scalable continuous query system for internet databases.
In SIGMOD Conference, pages 379–390, 2000.

[CDZ06] Yi Chen, Susan B. Davidson, and Yifeng Zheng. An efficient XPath
query processor for XML streams. In ICDE, 2006.

[CF05] Raphaël Chand and Pascal Felber. Semantic peer-to-peer overlays for
publish/subscribe networks. In Euro-Par, 2005.

[CF10] Artem Chebotko and Bin Fu. XML reconstruction view selection
in XML databases: Complexity analysis and approximation scheme.
LNCS, 6509, 2010.

[CHS02] Rada Chirkova, Alon Y. Halevy, and Dan Suciu. A formal perspective
on the view selection problem. VLDB J., 11(3):216–237, 2002.

[CIKN04] P. A. Chirita, S. Idreos, M. Koubarakis, and W. Nejdl. Pub-
lish/Subscribe for RDF-based P2P networks. In ESWS, 2004.

[CKPS95] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and
Kyuseok Shim. Optimizing queries with materialized views. In ICDE,
pages 190–200, 1995.

[CLM+04] Adina Crainiceanu, Prakash Linga, Ashwin Machanavajjhala, Jo-
hannes Gehrke, and Jayavel Shanmugasundaram. An indexing
framework for peer-to-peer systems. In SIGMOD, 2004.

126 BIBLIOGRAPHY

[CLM+07] Adina Crainiceanu, Prakash Linga, Ashwin Machanavajjhala, Jo-
hannes Gehrke, and Jayavel Shanmugasundaram. P-Ring: An effi-
cient and robust P2P range index structure. In SIGMOD, 2007.

[CM77] Ashok K. Chandra and Philip M. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In STOC, 1977.

[CRKMR10] Jesús Camacho-Rodríguez, Asterios Katsifodimos, Ioana Manolescu,
and Alexandra Roatis. LiquidXML: Adaptive XML Content Redistri-
bution. In CIKM (demo), 2010.

[DAF+03] Yanlei Diao, Mehmet Altinel, Michael J Franklin, Hao Zhang, and
Peter Fischer. Path sharing and predicate evaluation for high-
performance XML filtering. TODS, 2003.

[DFS99] Alin Deutsch, Mary F. Fernández, and Dan Suciu. Storing semistruc-
tured data with STORED. In SIGMOD Conference, pages 431–442,
1999.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, 2004.

[DGL00] Oliver M. Duschka, Michael R. Genesereth, and Alon Y. Levy. Recur-
sive query plans for data integration. J. Log. Program., 43(1):49–73,
2000.

[DIS] The Disco Project. http://discoproject.org/.

[DKP12] Marios D Dikaiakos, Asterios Katsifodimos, and George Pallis. Min-
ersoft: Software Retrieval in Grid and Cloud Computing Infrastruc-
tures. TOIT, 12(1):2, 2012.

[DLAV10] William Kokou Dedzoe, Philippe Lamarre, Reza Akbarinia, and
Patrick Valduriez. ASAP Top-k query processing in unstructured P2P
systems. In Peer-to-Peer Computing, 2010.

[DLZ05] David DeHaan, Per-Ake Larson, and Jingren Zhou. Stacked Indexed
Views in Microsoft SQL Server. In SIGMOD, 2005.

[DPT99] Alin Deutsch, Lucian Popa, and Val Tannen. Physical data indepen-
dence, constraints, and optimization with universal plans. In VLDB,
pages 459–470, 1999.

[DRF04] Y. Diao, S. Rizvi, and M.J. Franklin. Towards an internet-scale XML
dissemination service. In VLDB, 2004.

[DT03] Alin Deutsch and Val Tannen. MARS: A system for publishing XML
from mixed and redundant storage. In VLDB, 2003.

[DZD+03] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards
a common API for structured P2P overlays. In IPTPS, 2003.

[EAZZ09] Iman Elghandour, Ashraf Aboulnaga, Daniel Zilio, and Calisto
Zuzarte. Recommending XMLTable Views for XQuery Workloads. In
XSym workshop, 2009.

BIBLIOGRAPHY 127

[Edm67] Jack Edmonds. Optimum branchings. Journal of Research of the
National Bureau of Standards, 1967.

[ELS93] Peter Eades, Xuemin Lin, and W.F. Smyth. A fast and effective heuris-
tic for the feedback arc set problem. Information Processing Letters,
1993.

[eXi] eXist, an Open Source Native XML Database.
http://exist.sourceforge.net.

[FK99] Daniela Florescu and Donald Kossmann. Storing and Querying XML
Data using an RDMBS. IEEE Data Eng. Bull., 22(3):27–34, 1999.

[FM00] Thorsten Fiebig and Guido Moerkotte. Evaluating queries on struc-
ture with extended access support relations. In WebDB (Selected Pa-
pers), pages 125–136, 2000.

[Fre] Freepastry, an open-source implementation of pastry.
http://freepastry.org/FreePastry/.

[GJ79] Michael R Garey and David S Johnson. Computers and intractability.
Freeman New York, 1979.

[GKLM10] François Goasdoué, Konstantinos Karanasos, Julien Leblay, and
Ioana Manolescu. RDFViewS: a storage tuning wizard for RDF appli-
cations. In CIKM, 2010.

[GKLM12] François Goasdoué, Konstantinos Karanasos, Julien Leblay, and
Ioana Manolescu. View selection in semantic web databases. PVLDB,
5(1), 2012.

[GKM09] Michaela Gotz, Christoph Koch, and Wim Martens. Efficient algo-
rithms for descendant-only tree pattern queries. Information Systems,
2009.

[GL01] Jonathan Goldstein and Per-Åke Larson. Optimizing queries using
materialized views: A practical, scalable solution. In SIGMOD Con-
ference, pages 331–342, 2001.

[GM99a] Ashish Gupta and Inderpal Singh Mumick, editors. Materialized
Views: Techniques, Implementations, and Applications. The MIT Press,
1999.

[GM99b] Himanshu Gupta and Inderpal Singh Mumick. Selection of views to
materialize under a maintenance cost constraint. In ICDT, 1999.

[GM05] Himanshu Gupta and Inderpal Singh Mumick. Selection of views
to materialize in a data warehouse. IEEE Trans. Knowl. Data Eng.,
17(1):24–43, 2005.

[GNT09] Olivier Gauwin, Joachim Niehren, and Sophie Tison. Bounded delay
and concurrency for earliest query answering. In LATA, 2009.

[Gra90] Goetz Graefe. Encapsulation of Parallelism in the Volcano Query
Processing System. In SIGMOD Conference, 1990.

128 BIBLIOGRAPHY

[Gri] Grid’5000 network infrastructure. https://www.grid5000.fr/.

[GSAA04] A. Gupta, O.D. Sahin, D. Agrawal, and A.E. Abbadi. Meghdoot:
Content-based Publish/Subscribe over P2P networks. In Middleware,
2004.

[Gup97] Himanshu Gupta. Selection of views to materialize in a data ware-
house. In ICDT, pages 98–112, 1997.

[Gur13] Gurobi Optimizer. http://www.gurobi.com, 2013.

[GW97] R. Goldman and J. Widom. Dataguides: Enabling query formulation
and optimization in semistructured databases. In VLDB, 1997.

[GWJD03] Leonidas Galanis, Yuan Wang, Shawn R. Jeffery, and David J. DeWitt.
Locating Data Sources in Large Distributed Systems. In VLDB, 2003.

[Hal01] Alon Y. Halevy. Answering queries using views: A survey. VLDB J.,
10(4), 2001.

[HDG+07] M. Hong, A.J. Demers, J.E. Gehrke, C. Koch, M. Riedewald, and W.M.
White. Massively multi-query join processing in publish/subscribe
systems. In SIGMOD, 2007.

[HK99] J. Hoffmann and J. Koehler. A new method to index and query sets.
In JCAI, 1999.

[HRU96] Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. Im-
plementing data cubes efficiently. In SIGMOD, 1996.

[IHW01] Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. Integrating
Network-Bound XML Data. IEEE Data Eng. Bull., 24(2):20–26, 2001.

[JOT+06] H.V. Jagadish, B.C. Ooi, K. Tan, Q. H. Vu, and R. Zhang. Speeding
up search in peer-to-peer networks with a multi-way tree structure.
In SIGMOD, 2006.

[JOV05] H. V. Jagadish, Beng Chin Ooi, and Quang Hieu Vu. BATON: a bal-
anced tree structure for peer-to-peer networks. In VLDB, 2005.

[JSO] JSON. http://www.json.org.

[Kar12] Konstantinos Karanasos. View-Based Techniques for the Efficient Man-
agement of Web Data. Phd thesis, INRIA Saclay & Université Paris
Sud, June 2012.

[KBNK02] Raghav Kaushik, Philip Bohannon, Jeffrey F. Naughton, and Henry F.
Korth. Covering indexes for branching path queries. In SIGMOD,
2002.

[KFCGR10] Asterios Katsifodimos, Jean-Daniel Fekete, Alain Cady, and Cecile
Germain-Renaud. Visualizing the Dynamics of e-Science social net-
works (poster). The 5th EGEE User Forum, 2010.

[KKMZ11] Konstantinos Karanasos, Asterios Katsifodimos, Ioana Manolescu,
and Spyros Zoupanos. The ViP2P Platform: XML Views in P2P. Tech-
nical Report RR-7812, INRIA, November 2011.

http://www.gurobi.com

BIBLIOGRAPHY 129

[KKMZ12] Konstantinos Karanasos, Asterios Katsifodimos, Ioana Manolescu,
and Spyros Zoupanos. ViP2P: Efficient XML management in DHT
networks. In ICWE, 2012.

[KMV12] Asterios Katsifodimos, Ioana Manolescu, and Vasilis Vassalos. Mate-
rialized View Selection for XQuery Workloads. In SIGMOD, 2012.

[KP05] Georgia Koloniari and Evaggelia Pitoura. Peer-to-peer management
of XML data: issues and research challenges. SIGMOD Record, 34(2),
2005.

[KRML05] Joonho Kwon, Praveen Rao, Bongki Moon, and Sukho Lee. FiST:
Scalable XML document filtering by sequencing twig patterns. In
VLDB, 2005.

[KZ10] Konstantinos Karanasos and Spyros Zoupanos. Viewing a world of
annotations through AnnoVIP. In ICDE, 2010.

[LHH+04] Boon Thau Loo, Joseph M. Hellerstein, Ryan Huebsch, Scott Shenker,
and Ion Stoica. Enhancing P2P file-sharing with an internet-scale
query processor. In VLDB, 2004.

[LLCC05] Jiaheng Lu, Tok Wang Ling, Chee Yong Chan, and Ting Chen. From
region encoding to extended Dewey: On efficient processing of XML
twig pattern matching. In VLDB, 2005.

[LM09] Zhen Hua Liu and Ravi Murthy. A Decade of XML Data Management:
An Industrial Experience Report from Oracle. In ICDE, pages 1351–
1362, 2009.

[LMD+12] Boduo Li, Edward Mazur, Yanlei Diao, Andrew McGregor, and
Prashant Shenoy. SCALLA: A Platform for Scalable One-Pass An-
alytics Using MapReduce. ACM Transactions on Database Systems
(TODS), 2012.

[LNSS09] Lap Chi Lau, Joseph (Seffi) Naor, Mohammad R. Salavatipour, and
Mohit Singh. Survivable network design with degree or order con-
straints. SIAM J. Comput., 2009.

[LP08] Kostas Lillis and Evaggelia Pitoura. Cooperative XPath caching. In
SIGMOD, 2008.

[MB12] Imene Mami and Zohra Bellahsene. A survey of view selection meth-
ods. SIGMOD Record, pages 20–29, 2012.

[MCB11] Imene Mami, Remi Coletta, and Zohra Bellahsene. Modeling View
Selection as a Constraint Satisfaction Problem. In DEXA, 2011.

[MK12] Iris Miliaraki and Manolis Koubarakis. Foxtrot: Distributed structural
and value XML filtering. ACM TWEB, 2012.

[MKVZ11] Ioana Manolescu, Konstantinos Karanasos, Vasilis Vassalos, and Spy-
ros Zoupanos. Efficient XQuery rewriting using multiple views. In
ICDE, 2011.

130 BIBLIOGRAPHY

[ML86] Lothar F. Mackert and Guy M. Lohman. R* optimizer validation and
performance evaluation for distributed queries. In VLDB, 1986.

[MPV09] Ioana Manolescu, Yannis Papakonstantinou, and Vasilis Vassalos.
XML tuple algebra. In Encyclopedia of Database Systems. Springer,
2009.

[MS04] Gerome Miklau and Dan Suciu. Containment and equivalence for a
fragment of XPath. J. ACM, 51(1), 2004.

[MS05] Bhushan Mandhani and Dan Suciu. Query caching and view selec-
tion for XML databases. In VLDB, 2005.

[MW99] Jason McHugh and Jennifer Widom. Query Optimization for XML.
In VLDB, pages 315–326, 1999.

[MZ09a] Ioana Manolescu and Spyros Zoupanos. Materialized views for P2P
XML warehousing. In BDA (informal proceedings), 2009.

[MZ09b] Ioana Manolescu and Spyros Zoupanos. XML materialized views in
P2P. In DataX workshop (not included in the proceedings), 2009.

[ODPC06] Nicola Onose, Alin Deutsch, Yannis Papakonstantinou, and Emiran
Curtmola. Rewriting nested XML queries using nested views. In
SIGMOD, 2006.

[OR11] Alper Okcan and Mirek Riedewald. Processing theta-joins using
mapreduce. In SIGMOD, pages 949–960. ACM, 2011.

[ÖV11] M Tamer Özsu and Patrick Valduriez. Principles of distributed
database systems. Springer, 2011.

[Pap05] Olga Papaemmanouil. SemCast: Semantic multicast for content-
based data dissemination. In ICDE, 2005.

[PBYI09] Lucian Popa, Mihai Budiu, Yuan Yu, and Michael Isard. Dryadinc:
Reusing work in large-scale computations. In USENIX workshop on
Hot Topics in Cloud Computing, 2009.

[PCS+04] Shankar Pal, Istvan Cseri, Gideon Schaller, Oliver Seeliger, Leo Giak-
oumakis, and Vasili Vasili Zolotov. Indexing XML Data Stored in a
Relational Database. In VLDB, pages 1134–1145, 2004.

[PGI04] Neoklis Polyzotis, Minos Garofalakis, and Yannis Ioannidis. Approxi-
mate XML query answers. In SIGMOD, 2004.

[PH01] Rachel Pottinger and Alon Y. Halevy. Minicon: A scalable algorithm
for answering queries using views. VLDB J., 10(2-3):182–198, 2001.

[PKD10] George Pallis, Asterios Katsifodimos, and Marios D. Dikaiakos.
Searching for software on the egee infrastructure. Journal of Grid
Computing, 8(2):281–304, 2010.

[PZIÖ06] Derek Phillips, Ning Zhang, Ihab F. Ilyas, and M. Tamer Özsu. Inter-
Join: Exploiting indexes and materialized views in XPath evaluation.
In SSDBM, pages 13–22, 2006.

BIBLIOGRAPHY 131

[QLO03] Chen Qun, Andrew Lim, and Kian Win Ong. D(k)-index: an adaptive
structural summary for graph-structured data. In SIGMOD, 2003.

[RD01] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems. In
ICDSP, November 2001.

[RG00] Raghu Ramakrishnan and Johannes Gehrke. Database Management
Systems. Osborne/McGraw-Hill, 2nd edition, 2000.

[RM09a] Praveen Rao and Bongki Moon. An internet-scale service for publish-
ing and locating XML documents. In ICDE, 2009.

[RM09b] Praveen R. Rao and Bongki Moon. Locating XML documents in a
peer-to-peer network using distributed hash tables. IEEE TKDE, 21,
2009.

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, 2003.

[RSS96] Kenneth A. Ross, Divesh Srivastava, and S. Sudarshan. Materialized
view maintenance and integrity constraint checking: trading space
for time. In SIGMOD, 1996.

[SAC+79] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price. Access path selection in a relational database man-
agement system. In ACM SIGMOD, 1979.

[Sax] SAXON: The XSLT and XQuery Processor.
http://saxon.sourceforge.net.

[SF90] A. Segev and W. Fang. Currency-based updates to distributed mate-
rialized views. In ICDE, 1990.

[SHA05] Gleb Skobeltsyn, Manfred Hauswirth, and Karl Aberer. Efficient pro-
cessing of XPath queries with structured overlay networks. In CoopIS,
2005.

[SMGC05] Carlo Sartiani, Paolo Manghi, Giorgio Ghelli, and Giovanni Conforti.
XPeer : A Self-Organizing XML P2P Database System. In Current
Trends in Database Technology (EDBT 2004 Workshops), 2005.

[SSB+00] Jayavel Shanmugasundaram, Eugene J. Shekita, Rimon Barr,
Michael J. Carey, Bruce G. Lindsay, Hamid Pirahesh, and Berthold
Reinwald. Efficiently publishing relational data as XML documents.
In VLDB, 2000.

[STZ+99] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He,
David J. DeWitt, and Jeffrey F. Naughton. Relational Databases for
Querying XML Documents: Limitations and Opportunities. In VLDB,
1999.

[SWK+02] Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey,
Ioana Manolescu, and Ralph Busse. XMark: A benchmark for XML
data management. In VLDB, 2002.

132 BIBLIOGRAPHY

[TATV11a] Jordi Creus Tomàs, Bernd Amann, Nicolas Travers, and Dan Vodislav.
RoSeS: A continuous content-based query engine for RSS feeds. In
Database and Expert Systems Applications. Springer, 2011.

[TATV11b] Jordi Creus Tomàs, Bernd Amann, Nicolas Travers, and Dan Vodislav.
RoSeS: a continuous query processor for large-scale RSS filtering and
aggregation. In CIKM. ACM, 2011.

[TBF+03] Wesley Terpstra, Stefan Behnel, Ludger Fiege, Andreas Zeidler, and
Alejandro Buchmann. A peer-to-peer approach to content-based pub-
lish/subscribe. In DEBS, 2003.

[tCM07] Balder ten Cate and Maarten Marx. Navigational XPath: calculus and
algebra. SIGMOD Record, 36(2):19–26, 2007.

[TGMS08] Jens Teubner, Torsten Grust, Sebastian Maneth, and Sherif Sakr. De-
pendable cardinality forecasts for XQuery. VLDB, 2008.

[TRP+04] Feng Tian, Berthold Reinwald, Hamid Pirahesh, Tobias Mayr, and
Jussi Myllymaki. Implementing a scalable XML publish/subscribe
system using relational database systems. In ACM SIGMOD, 2004.

[TS97] Dimitri Theodoratos and Timos K. Sellis. Data warehouse configura-
tion. In VLDB, pages 126–135, 1997.

[TSJ+09] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad
Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham
Murthy. Hive: a warehousing solution over a map-reduce frame-
work. VLDB, pages 1626–1629, 2009.

[TVB+02] Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasun-
daram, Eugene J. Shekita, and Chun Zhang. Storing and querying
ordered XML using a relational database system. In SIGMOD Confer-
ence, 2002.

[TYÖ+08] Nan Tang, Jeffrey Xu Yu, M. Tamer Özsu, Byron Choi, and Kam-Fai
Wong. Multiple materialized view selection for XPath query rewrit-
ing. In ICDE, 2008.

[TYT+09] Nan Tang, Jeffrey Xu Yu, Hao Tang, M. Tamer Özsu, and Peter A.
Boncz. Materialized view selection in XML databases. In DASFAA,
2009.

[W3C04] W3C. Extensible Markup Language (XML) 1.0, 2004.

[W3C07a] W3C. XML path language (XPath) 2.0.
http://www.w3.org/TR/xpath20/, January 2007.

[W3C07b] W3C. XQuery 1.0: An XML query language.
http://www.w3.org/TR/xquery/, January 2007.

[W3C07c] W3C. XQuery 1.0 and XPath 2.0 Data Model (XDM).
http://www.w3.org/TR/xpath-datamodel/, January 2007.

[w3c07d] XPath Functions and Operators. www.w3.org/TR/xpath-functions,
2007.

BIBLIOGRAPHY 133

[W3C08] W3C. Extensible Markup Language (XML) 1.0.
http://www.w3.org/TR/REC-xml/, November 2008.

[WPJ03] Yuqing Wu, Jignesh M. Patel, and H.V. Jagadish. Structural join order
selection for XML query optimization. In ICDE, 2003.

[WTW09] Xiaoying Wu, Dimitri Theodoratos, and Wendy Hui Wang. Answering
XML queries using materialized views revisited. In CIKM, 2009.

[XML] XML Schema. http://www.w3.org/TR/XML/Schema.

[XO05] W. Xu and M. Ozsoyoglu. Rewriting XPath queries using materialized
views. In VLDB, 2005.

[YGM03] Beverly Yang and Hector Garcia-Molina. Designing a super-peer net-
work. In ICDE, 2003.

[YLH03] Liang Huai Yang, Mong Li Lee, and Wynne Hsu. Efficient mining of
XML query patterns for caching. In VLDB, 2003.

[ZND+01] Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, Qiong Luo, and
Guy M. Lohman. On supporting containment queries in relational
database management systems. In SIGMOD Conference, pages 425–
436, 2001.

[Zou09] Spyros Zoupanos. Efficient Peer-to-Peer Data Management. Phd thesis,
Université Paris Sud, December 2009.

	Abstract
	Acknowledgments
	Introduction
	Context: Web Data Management
	Motivation
	Thesis Outline

	XML Databases, Views and Rewritings
	The XML Data Model
	Data Model
	Standard XML Query Languages
	XML Data Management Systems
	XML Query Dialect and Tree Pattern Formalism
	XQuery Dialect
	Joined Tree Patterns

	XML Materialized Views
	Materialized Views Concepts and Core Problems
	XML View-based Rewriting and Logical Algebraic Plans
	XML View-Based Rewriting Algorithm

	Rewriting Cost Estimation and Optimization
	View Size Estimation
	Algebraic Plan Cost Estimation
	Plan Optimization

	Summary

	Materialized View Selection for XQuery
	Motivation and Outline
	Problem Statement
	Candidate View Sets
	Candidate Views for a Workload
	Candidate Views for a Tree Pattern Query
	Candidate Views for a Query with Value Joins

	Pruning Candidate Views
	Sets of Candidate Views

	View Selection Algorithms
	Exhaustive Search
	Knapsack-style View Selection
	State Search-based View Selection
	State Transformations
	Reduce-Optimize Algorithm (ROA)

	Closest Competitor Algorithms
	Experimental Evaluation
	Framework
	Inputs: Data, Queries and Space Budget
	Algorithms and Settings
	Candidate View Set Size
	View Selection Algorithm Effectiveness
	View Selection Algorithm Efficiency
	Experiment Conclusion

	Related work
	Summary

	Distributed View-based Data Dissemination
	Motivation and Outline
	State of the Art
	P2P Data Sharing Networks
	XML Data Management Based on DHTs
	Managing XML on a DHT: Platforms vs. Simulations
	Previous Publications on ViP2P

	ViP2P Platform Overview
	ViP2P by Example
	View Publication
	Document Publication
	Ad-hoc Query Answering

	ViP2P Peer Architecture
	External Subsystems
	Document Management Module
	View Management Module
	Query Management Module

	ViP2P View Management
	View Definition Indexing and Lookup for View Materialization
	View Definition Indexing and Lookup for Query Rewriting
	Label Indexing (LI)
	Return Label Indexing (RLI)
	Leaf Path Indexing (LPI)
	Return Path Indexing (RPI)

	Experimental Results
	Experimentation Settings
	View Materialization Micro-benchmarks
	View Materialization in Large Networks
	View Indexing and Retrieval Evaluation
	Query Engine Evaluation
	Conclusion of the Experiments

	Summary

	Delta: Scalable View-based Publish/Subscribe
	Motivation and Outline
	Problem Model
	Rewritability Graph (RG)
	Characteristics of a Configuration
	Problem Statement

	Configuration Selection
	Rewritability Graph Generation
	Configuration Selection Overview
	CFG Utilization Optimization Through ILP
	CFG Latency Optimization
	Incremental CFG Computation

	View-based Rewriting
	Views and Rewritings
	Embedding Graph (EG)
	View-based Rewriting Algorithm
	Generality of our Approach

	Experimental Evaluation
	Experimental Setup
	EG and RG Generation
	CFG Utilization Optimization Through ILP
	Greedy CFG Latency Optimization
	Experiments in a WAN Deployment
	Experiment Conclusion

	Related Works
	Future Work
	Summary

	Conclusion and Future Work
	Thesis Summary
	Perspectives

	Bibliography

