
Muses: Distributed Data Migration System for
Polystores

Abdulrahman Kaitoua
DFKI

Berlin, Germany
abdulrahman.kaitoua@dfki.de

Tilmann Rabl
TU Berlin, DFKI
Berlin, Germany
rabl@tu-berlin.de

Asterios Katsifodimos
Delft University of Technology

Netherlands
a.katsifodimos@tudelft.nl

Volker Markl
TU Berlin, DFKI
Berlin, Germany

volker.markl@tu-berlin.de

Abstract—Large datasets can originate from various sources
and are being stored in heterogeneous formats, schemas, and
locations. Typical data science tasks need to combine those
datasets in order to increase their value and extract knowledge.
This is done in various data processing systems with diverse
execution engines. In order to take advantage of each execution
engine’s characteristics and APIs data scientists need to migrate
and transform their datasets at a very high computational cost
and manual labor. Data migration is challenging for two main
reasons: i) execution engines expect specific types/shapes of the
data as input; ii) there are various physical representations of
the data (e.g., partitions). Therefore, migrating data efficiently
requires knowledge of systems internals and assumptions.

In this paper we present Muses, a distributed, high-
performance data migration engine that is able to forward,
transform, repartition, and broadcast data between distributed
engines’ instances efficiently. Muses does not require any changes
in the underlying execution engines. In an experimental evalua-
tion, we show that migrating data from one execution engine to
another (in order to take advantage of faster, native operations)
can increase a pipeline’s performance by 30%.

Index Terms—Distributed systems, data migration, data trans-
formation, big data engine, data integration.

I. INTRODUCTION

Polystores [1], [4], [10] combine a set of specialized data
processing engines (e.g., graph engines, dataflow engines,
array databases) in order to perform data analysis at scale,
using each specialized engine according to its characteristics.
Each engine uses its own format and storage location for the
data it processes, often making data migration between those
data processing engines the bottleneck in processing that data.
Thus, the decision on whether two different execution engines
are used for a single data pipeline, depends on whether the
overhead of data migration is smaller than the speedup caused
by a specialized execution engine.

Current Polystores consider execution engines and data
storage as separated layers. Before performing any operation
combining two different datasets, all datasets need to be loaded
to the store performing that operation. In this paper, we show
that data migration can be perform more than a simple extract-
load process. During data migration, we can take into account
the physical representation of data (partitioning, distribution,
locality, etc.) and migrate data in the most efficient manner.
For instance, a parallel equijoin operator can assume that the
incoming data is partitioned by key. Then, partitioning while
migrating data can yield significant performance benefits.

Efficient data migration between distributed engines is chal-
lenging. When migrating data one should take into account the

different execution strategies and data representation assump-
tions of each of the individual participating execution engines.
This requires deep knowledge of the participating execution
engines, as well as the costs of each operation versus the costs
of different migration strategies and their physical properties.

As a solution to these challenges, we present Muses, a
distributed data migration system. Our contributions are:

• We present and evaluate Muses, a distributed data mi-
gration system that can connect to different distributed
execution engines (currently supporting Apache Hadoop,
Spark, Flink, Postgres, and SciDB) and migrate data
respecting physical properties.

• Muses is reactive to changes of engines instances topol-
ogy: Apache Spark [14] and Flink [2], [11], reserve ap-
plication resources at run-time. Thus, instances topology
differ based on the resources availability. Muses engine
reacts to the executing engines topology changes.

• Muses is able to perform shuffling and data reorganization
during data migration, improving performance up to 30%.

• We evaluate Muses on real data with a genomics use case.
The rest of this paper is organized as follows: Section II

discusses the motivating example, a spatial join in genomics,
which utilizes cross-engine execution. Section III shows the
state of the art in data migration for Polystores. Section IV
describes the architecture of Muses in detail. Section V, shows
the performance evaluation. Finally, Section VI concludes the
paper with ideas for future work.

II. MOTIVATING EXAMPLE

Many genomics applications integrate several data types
located in different storage technologies. The GenoMetric
Query Language (GMQL) [9] was developed to perform
queries on heterogeneous genomic data. GMQL is SQL-
like language to query region-based genomic data. GMQL
contains operations on the region data, RD (DNA intervals
with a start and a stop position represent regions, such as
genes regions), and the meta-data, MD, which describes the
genomic data (clinical data). A single GMQL script might
contain aggregation operations, meta operations, and domain-
specific operations. In our use case, clinical data (metadata)
is small in size relative to genomic data (regions data) and it
is stored in PostgreSQL database. Previous work has shown
that GMQL operations on metadata perform well on the
PostgreSQL datbase management system. Cattani et. al. [3]
analyzed performance differences between implementations of
GMQL region commands in SciDB [12] (a multi-dimensional



Fig. 1: Abstract Syntax Tree of GMQL script.

scientific database) and Apache Spark [14]. Apache Spark
exhibited better performance in specific genomic operations
because of the ease of use of UDFs in Spark for complex
genomic operations, while SciDB processes aggregations in
orders of magnitude faster. Based on these observations, the
following GMQL operations can be deployed on the three
engines as shown in Figure 1:
GENES = SELECT() ANNOTATIONS;
PEAKS = SELECT() BED_PEAKS;
MAPPED = GenometricJoin() PEAKS GENES;
SELECTED = SELECT(Count_PEAKS_GENES>0) MAPPED;
RELEVANT = COVER(1,2) SELECTED;
MATERIALIZE RELEVANT INTO OUTPUT;

The query consists of 5 operations and returns regions re-
sponding to a specific biological problem. The query performs
both classic relational operations and domain-specific ones.
The resulting operator graph consists of two directed acyclic
graphs (DAG), one for regions operations and another for
metadata operations. The regions graph (green in Figure 1)
consists of three central operations; a selection, a genomics
spatial join (finds interval intersections), and a genomic cover
(histogram) operation. The operator graph has three types
of connections between the data stores in this example: dis-
tributed to distributed (spark to SciBD), distributed to single
node (SciDB to PostgreSQL), and single node to distributed
(PostgreSQL to Spark). These can be optimized using Muses.

III. RELATED WORK

Two proposals for data migration in PolyStores project are
discussed in detail in Pipegen [7] and the work by Dziedzic
et al. [5]. The former concentrates on achieving the best
performance at the expense of generality of the approach,
while the latter discusses more general approach at the expense
of performance.

Lim et al. motivate running applications with varying
parameters using cross-engine execution to optimize perfor-
mance [10]. The authors propose ideas for data migration
between engines and choose a shared HDFS as the medium
between execution engines. Our experiments have shown that
HDFS is a very slow migration medium. For this reason, we
focus on on-the-fly migration between different engines by
establishing connections among those engines. Agrawal et al.
present a vision of a cross-engine execution engine architecture
[1]. The authors concentrate on the engines and leave out
data migration with a visionary discussion around data storage

independency [8]. Gupta et al. present cross-engine join query
execution in federated database systems [6]. The authors only
discuss the reduction of data migration based on join operation
parameters. Those ideas can be incorporated into Muses, as
it can perform data partitioning for joins while connecting
distributed data stores to hide the migration overhead.

IV. ARCHITECTURE

The Muses engine is designed to connect distributed data
engines for cross-engine execution. Figure 2, shows the gen-
eral architecture of the Muses engine. Muses consists of a
single Muses Manager node and one or more Muses Nodes.
In Muses, two types of data are exchanged; control data
and application data streams. The Muses Manager sends
configurations (control data) to Node Managers and receives
profiling information. While Muses Nodes exchange only the
application data streams.

Each data migration job in Muses contains a data Producer
and a data Consumer. We refer to data engines as sources or
sinks; one or more sources form a Producer and one or more
sink form a Consumer. Sinks and sources might be distributed
engines. Thus, we call a source’s output threads as source
instances and the sink input threads as sink instances. For
simplicity of the description ofthe Muses architecture in Figure
2, Muses nodes are either marked as Producer or Consumer
nodes. Since each machine can host several sinks/sources, any
Muses node can be a producer and a consumer node at the
same time.

We represent sources and sinks in Figure 2 as either
distributed sources/sinks or local sources/sinks. Source/Sink
’A’ is shown as a distributed source and has three instances dis-
tributed on two machines (Server 1, and Server 2). Source/Sink
’C’ has one instance ’C1’ on Server 1, and source/sink ’DB’
is a database instance on Server 2.

A. Muses Manager

The Muses Manager manages registration of new
sources/sinks, distributes job configurations on nodes, mon-
itors job execution and collects profiling information.

The engine registration process requires the user to provide
a list of machines that host the source/sink and the connectors
of the registered source/sink. Migration jobs are submitted to
the Muses Manager by the user or by a cross-engine execution
dispatcher. Muses jobs configurations include: the producers
and consumers for the migration job, the data distribution
operation between the producer and the consumer, and the
engine’s topology, in case it has been dynamically set.

For every data migration job, the Muses Manager sends
the task configurations to each Muses Node involved in the
job execution, the task configurations includes: The number
of Connector instances for each source/sink on the machine,
which is equal to the number of source/sink instances on the
machine. The number of expected input streams for each sink
instance, which depends on the number of sources instances
and the data distribution strategy. The data distribution proce-
dure for Muses Node routers with a list of destination (sinks)
machines addresses.



Fig. 2: Muses Architecture

Fig. 3: Muses
Connector

Fig. 4: Muses
stream format

B. Muses Node
Figure 2 shows Muses Nodes, which consist of a set of

Connectors (Pn), consumer and producer routers, and a Node
manager. The Node Manager is the only daemon process that
keeps running on each node for the Muses engine, while
Muses routers and connectors are initialized on demand at the
job configuration phase which reduces the overall overhead of
Muses.

1) Node Manager: The Node Manager is responsible for
keeping a connection with the Muses Manager for receiving
job configurations and sending status and aggregated streams
profiling information through heartbeats messages. The Node
Manager initializes the routers for the job by setting up
consumer/producer streams, manages resources reserved by
the routers and Connectors, and restores the stream in case
of nodes failure.

2) Connector: Apache Arrow is used as an intermediate
data representation to facilitate connecting several engines
with minimal coding requirements.

Figure 3 shows the logical representation of a Muses
Connector in detail. The Connector consists of a Read operator
that reads from the source and translates the data into a Muses
Stream which encapsulates an Apache Arrow 1 data structure,

1Apache Arrow, https://arrow.apache.org/

a Write operator that reads from the Muses Stream and writes
to the data sink, and a socket client to the routing module
The engines’ topologies and the Connectors are the two main
parameters needed to connect engines.

Two types of schema transformations have to be considered
in connecting distributed systems; The logical schema, for ex-
ample, represents a row-based, column-based, or array-based
data layout. The physical schema is represented by data types,
for example an unsigned 64 bit integer. Muses streams are
used for the data transformation between distributed engines.

A Muses stream consists of several Arrow streams with an
associated schema. The schema contains the stream ID and
information about the data set in the original logical format,
such as: source logical schema, primary keys, secondary keys,
values used as dimensions for Array databases, and values
used to as keys and values for key/value databases. Arrow
streams have a structure that is shown in Figure 4, they consist
of the Arrow Schema and one or more Record Batches.

3) Routers: The Muses Router is an Akka streaming graph
that controls the flow of streams in and out of a Muses
Node. The Routers control the Connector instances. When
the node has only one Consumer instance, we configure the
Consumer Router as a forward router to optimize the link.
When consumer engine instances vary in their throughput, we
perform stream balancing in case there is no specific shuffling
mechanism already set using Akka Balancing Router.

Once the streams end, the Connector instances are no longer
needed. The Consumer Routers and Producer Routers start
and stop the Connectors instances based on the data streams
tags and the job configurations. In addition to data migration,
the router aggregates profiling information and sends it to the
Node Manager. Profiling information includes amounts of data
read or written from or to any data source or sink.

V. PERFORMANCE EVALUATION

Data for the experiments was collected from the Encode
genomics repository [13]. Encode data is a tab-delimited text
with ten columns. The schema has two Long fields, two String
fields, one Char field, and four Double fields. We use 9 data
sets of different size to show the performance with increasing
data size. Our experimentation platform is a cluster comprised
of 8 machines containing Intel® E5620 processors with 8
hyper-threads, and 32GB memory.

Fig. 5: Script execution Fig. 6: Cover performance.

A. Single engine solution versus Polystores

In this section, we discuss the comparison between two
deployments of the motivation example, shown in Section II;
a single system deployment and Poystores deployment. In the
single system deployment, Apache Spark uses all the eight



machines resources. While for the Polystores deployment, the
eight machines are shared between three engines: Apache
Spark is installed on all eight machines while 4 out of those
eight machines host a SciDB installation and one machine
hosts PostgreSQL.

Figure 5 shows the performance of both the single system
and the Polystores setup. In the Polystore setup, we run
only a part of the execution plan on SciDB, which is the
GenomicCover operator. The performance gain from running
the GenomicCover operator over SciDB is shown in Figure
6. For input data sizes of 35GB, 56GB, and 70GB, the
performance speed up for the polystore deployment are 1.2,
1.25, and 1.3 respectively. The performance speed up trend is
positive with respect to the input data size.

The automated distributed data migration, thanks to Muses
engine, allows the overlapping of the engines executions
and the data migration; thus minimizes the overhead of the
data migration. As soon as the first output sample is being
processed by Apache Spark, it is streamed to SciDB nodes
and imported into SciDB.

B. Data migration profiling
We designed our experiments in this section to show the

intermediate data representation overhead and the perfor-
mance from connecting distributed engines using a hard-coded
pipeline. Al. Haynes et al. show that Apache Arrow as an
intermediate representation performs best out of a variety
of data representations [7], thus we concentrated on using
Apache Arrow in our tests. We exclude the data export and
load execution time in our profiling. We focus on the data
migration process, but also evaluate the effect of export and
import parallelism.

The socket connection scenario, in Figure 7, transfers the
data from the source to the sink engine machines as binary
stream. In this scenario, no data is parsed. Though, this
scenario is the simplest with the highest performance, it needs
both engines to be almost identical in both physical and logical
data formats.

Migrating data between two engines with different data
types requires a data translation process. In the Akka setup,
Figure 7, the data translation operation translates the data types
from the source types to the destination engine’s types. The
drawback of this setup is that it is connection specific. The data
transformation introduces additional overhead on the migration
process while increasing process parallelism can decrease this
overhead.

In Akka with Arrow setup, the data is translated into an in-
termediate data representation then translated back to the sink
engine’s data types. The connection setup is independent of the
engines’ data types. Changes of one of the engines’ schemas
only changes the translation at its part of the connection,
and the connection remains valid. Even though this scenario
has the overhead of the intermediate data representation, the
performance is comparable to transferring the data without
intermediate data format because Arrow structure reduces the
data transferred on the network, and thus the performance is
comparable with the second scenario. Of course, this is not
always the case, because some engines produce data in binary
format and thus Arrow format might not be more compact
than the engines binary.

0 5 10 15 20 25 30 35 40
0

400

800

1,200

1,600

2,000

Data size (GB)

Ex
ecu

tio
nt

im
e(

se
c.)

SocketConnection

Akka

AkkaWithArrow

Fig. 7: Three data migration setups.

VI. CONCLUSIONS

In this paper we presented Muses, an efficient data migration
engine that enables migrating data among different distributed
execution. Our experiments show very promising results: using
a migration engines such as Muses, one can speed up the
migration of data making the case for distributed Polystores
systems stronger. Our focus for the future is to automatically
generate connectors from high-level descriptors in order to
make the integration of new connectors easier and less labor
intensive. Moreover, plan to look at data compression tech-
niques and integrate more execution engines in our framework.
Acknowledgment. This work has been supported through a grant by
the German Ministry for Education and Research as Berlin Big Data
Center BBDC (funding mark 01IS14013A).

REFERENCES

[1] D. Agrawal, S. Chawla, A. K. Elmagarmid, Z. Kaoudi, M. Ouzzani,
P. Papotti, J.-A. Quiané-Ruiz, N. Tang, and M. J. Zaki. Road to freedom
in big data analytics. In EDBT, pages 479–484, 2016.

[2] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske,
A. Heise, O. Kao, M. Leich, U. Leser, V. Markl, et al. The stratosphere
platform for big data analytics. The VLDB JournalThe International
Journal on Very Large Data Bases, 23(6):939–964, 2014.

[3] S. Cattani, S. Ceri, A. Kaitoua, and P. Pinoli. Evaluating genomic big
data operations on scidb and spark. In International Conference on Web
Engineering, pages 482–493. Springer, 2017.

[4] J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe,
J. Kepner, S. Madden, D. Maier, T. Mattson, and S. Zdonik. The bigdawg
polystore system. ACM Sigmod Record, 44(2):11–16, 2015.

[5] A. Dziedzic, A. J. Elmore, and M. Stonebraker. Data transformation
and migration in polystores. In High Performance Extreme Computing
Conference (HPEC), pages 1–6. IEEE, 2016.

[6] A. M. Gupta, V. Gadepally, and M. Stonebraker. Cross-engine query
execution in federated database systems. In High Performance Extreme
Computing Conference (HPEC), pages 1–6. IEEE, 2016.

[7] B. Haynes, A. Cheung, and M. Balazinska. Pipegen: Data pipe generator
for hybrid analytics. In Proceedings of the ACM Symposium on Cloud
Computing, ser. SOCC 16, New York, NY, USA. ACM, 2016.

[8] A. Jindal, J. Quiané-Ruiz, and S. Madden. Cartilage: adding flexibility
to the hadoop skeleton. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, pages 1057–1060.
ACM, 2013.

[9] A. Kaitoua, P. Pinoli, M. Bertoni, and S. Ceri. Framework for supporting
genomic operations. IEEE Transactions on Computers, 66(3):443–457,
2017.

[10] H. Lim, Y. Han, and S. Babu. How to fit when no one size fits. In
CIDR, 2013.

[11] T. Rabl, J. Traub, A. Katsifodimos, and V. Markl. Apache flink in current
research. it-Information Technology, 58(4), 2017.

[12] M. Stonebraker, P. Brown, D. Zhang, and J. Becla. Scidb: A database
management system for applications with complex analytics. volume 15,
pages 54–62. IEEE, 2013.

[13] S. University. Encode: Encyclopedia of dna elements, oct 2017.
[14] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.

Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing. In Proceedings
of the 9th USENIX conference on Networked Systems Design and
Implementation, pages 2–2. USENIX Association, 2012.


