
Clonos: Consistent Causal Recovery for Highly-Available
Streaming Dataflows

Pedro F. Silvestre Marios Fragkoulis Diomidis Spinellis Asterios Katsifodimos
Delft University of Technology

{P.F.Silvestre,M.Fragkoulis,D.Spinellis,A.Katsifodimos}@tudelft.nl

ABSTRACT
Stream processing lies in the backbone of modern businesses, being
employed for mission critical applications such as real-time fraud
detection, car-trip fare calculations, traffic management, and stock
trading. Large-scale applications are executed by scale-out stream
processing systems on thousands of long-lived operators, which are
subject to failures. Recovering from failures fast and consistently are
both top priorities, yet they are only partly satisfied by existing fault
tolerance methods due to the strong assumptions these make. In
particular, prior solutions fail to address consistency in the presence
of nondeterminism, such as calls to external services, asynchronous
timers and processing-time windows.

This paper describes Clonos, a fault tolerance approach that
achieves fast, local operator recovery with exactly-once guaran-
tees and high availability by instantly switching to passive standby
operators. Clonos enforces causally consistent recovery, including
output deduplication, by tracking nondeterminism within the sys-
tem through causal logging. To implement Clonos we re-engineered
many of the internal subsystems of a state of the art stream proces-
sor. We evaluate Clonos’ overhead and recovery on the Nexmark
benchmark against Apache Flink. Clonos achieves instant recovery
with negligible overhead and, unlike previous work, does not make
assumptions on the deterministic nature of operators.
ACM Reference Format:
Pedro F. Silvestre, Marios Fragkoulis, Diomidis Spinellis and Asterios Kat-
sifodimos. 2021. Clonos: Consistent Causal Recovery for Highly-Available
Streaming Dataflows. In Proceedings of the 2021 International Conference on
Management of Data (SIGMOD ’21), June 20–25, 2021, Virtual Event, China.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3448016.3457320

1 INTRODUCTION
Stream processing systems have reached a high level of maturity
in the last ten years, rendering them production-grade systems.
Apache Flink [12], Apache Kafka [44], Samza [36], Jet [25] and other
systems are serving important applications such as fraud detection
in transactions, car-trip pricing, demand forecasting, stock trading,
and even real-time traffic control.

Making large scale-out deployments fault-tolerant, is the key
factor that enabled modern stream processing systems to be used in
production settings. Streaming applications require reliable, highly
available, and high-performance systems that perform consistent

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8343-1/21/06.
https://doi.org/10.1145/3448016.3457320

processing. Consistency in the modern streaming systems nomen-
clature is referred to as exactly-once processing, which means that
an incoming record will apply its effects to the computation state
of the system exactly once, even in the event of failures.

State of the art stream processing systems can provide exactly-
once processing and high-availability under failures, but by design
they have grown to support specific types of workloads summarized
as analytics functions, for instance aggregates and joins. These com-
putations, which are associated with streaming systems since their
early times, are mostly deterministic and operate solely within sys-
tem boundaries. In contrast, emerging classes of applications, such
as general event-driven Cloud applications [11, 30], and Stateful
Functions [1, 39] involve custom nondeterministic business logic
and frequent interactions with external systems and databases. Be-
cause of their event-based nature and performance requirements,
such applications are increasingly executed as dataflows on stream
processors. To support these applications effectively, dataflow sys-
tems need to embrace nondeterminism in their fault tolerance and
high availability approaches.

Existing fault tolerance and high-availability approaches [8,
9, 18, 28, 38] fail to address the exactly-once processing guaran-
tees in the presence of nondeterministic computations, mainly be-
cause they make very strong assumptions that are not satisfied
in modern stream processing workloads. Streamscope [34] and
Timestream [37] assume deterministic computations, which re-
stricts their applicability in practical scenarios while SEEP [35] and
Rhino [18] additionally assume records to be timestamped with
a monotonically increasing logical timestamp, failing to support
out-of-order processing [33], which is supported by the majority
of modern streaming systems today. Finally, Millwheel [2] is the
only system that does not make these assumptions, but it requires
a specialized transactional backend, such as Spanner [17], which
requires atomic clocks not found in commodity clusters.

In this paper we propose Clonos, a fault tolerance and high-
availability method built on top of Apache Flink with the goal of
supporting all existing workloads that Flink supports today, i.e.,
Clonos, as opposed to related work, supports nondeterministic
computations. Although Clonos was built and tested on Apache
Flink [12], it can be used in any stream processor that simply sup-
ports FIFO per-partition channels and coordinated checkpoints [15].
In this paper we make two important contributions. First, we de-
scribe a protocol and the associated system components to perform
local recovery without the need to restart a complete streaming
topology, aiming at high availability and low latency with exactly-
once processing guarantees. No existing work has addressed this
problem on a feature-rich production-grade system. Second, we deal
with the inherent nondeterminism of practical stream processing
workloads in a manner transparent to application programmers.

https://doi.org/10.1145/3448016.3457320
https://doi.org/10.1145/3448016.3457320

Standby Task #4

1. ... 1. ...
2. ...

1. ...

⋈ SINK

1. ...
2. ...

Task #4

Causal Log

SRC σ {UDF} π

State
Store

Standby Task #2

1. ORDER 1
2. TIMER id=X
3. HTTP {"a":3}
4. TS 161...7

Log #2
1. ...
2. ...
3. ...

Log #1

1. CHK RPC
2. TS 161...3
3. TS 161...7
4. TS 161...9
5. CHK RPC

Log #1

In-Flight Log

HTTP
1

2
3

1

Output Queue

In-Flight Log

12

Output Queue

1

23

Standby Task #1

1

5. 4.

Replicated
Upstream Log

Local
Log

Task #1 Task #2

SerializerDe
serializer

σ {UDF} π
SRC

Buffer
Pool

Causal Log

Task #3

Causal Log

Serializer
De

serializer ⋈ SINK

De
serializer

Causal Services

Checkpoint
Barrier

Standby Task #3
Task #3

SRC

TS
161...9

1. ...
2. ...

Causal Log

2

2.

2

3.Determinant
Delta Record

Buffer

Figure 1: Approach overview.

To build Clonos, we implemented in-flight record logs and
lineage-based replay for local recovery, standby tasks and live
state transfer for high availability, and causal logging [21] for
exactly-once consistent execution of nondeterministic computa-
tions and system functions. We present the recovery protocol, the
high-availability mechanisms, the means to track nondeterminism,
and a set of noteworthy system design and implementation deci-
sions that render Clonos a practical replacement for Flink’s fault
tolerance mechanism. In short, with this paper we contribute:

• a novel fault tolerance approach that combines checkpoint-
ing, standby operators, and causal logging to:
– provide exactly-once consistent local recovery and high
availability on a production-grade system, and

– support nondeterministic computations and system func-
tions

• an analysis of nondeterminism in stream processing and
how Clonos guarantees exactly-once processing

• thorough empirical experiments carried out in a realistic
deployment

The rest of the paper is organized as follows. Section 2 offers an
overview of our fault tolerance approach. Section 3 outlines the
stream processing model used in the paper and includes preliminar-
ies regarding rollback recovery, causal logging, and Apache Flink’s
execution model. Section 4 analyzes nondeterminism in stream pro-
cessing and how it is addressed with Clonos, while Section 5 shows
how Clonos guarantees exactly-once processing. Section 6 reports
important design decisions necessary to make Clonos practically
appliable. Finally, Section 7 presents a broad set of experiments and
Section 8 presents related work. We conclude in Section 9.

2 APPROACH OVERVIEW
Clonos’ main goal is to localize the impact of a failure to the min-
imum: only failed tasks need to recover from failure, and their
upstream and downstream tasks take minimal action towards help-
ing the failed tasks to recover. Recovering locally with exactly-once
processing guarantees is challenging: in order to recreate the local
state of the failed task, we need to use the most recent checkpoint
of that task, and replay all the input records whose effects (on the
state) have not been checkpointed. Another difficult problem is
record deduplication: because some of the records have already
been produced by a failed task, the recovery protocol needs to

ensure that those messages are only processed once. The prob-
lem becomes even harder for nondeterministic computations that
may produce different output (and operator state) for the same
input across executions. Achieving all this in a highly-available
manner where recovery has to be blazingly fast and the impact
to the system’s performance minor, is very challenging. Besides
local recovery, Clonos features a high availability mode where it
uses standby tasks with preloaded state to speed up recovery and
further lower the impact of a failure. Below we give an overview of
our recovery protocol.

2.1 Normal Operation
Figure 1 depicts a simple job with four tasks and their corresponding
standbys. Each task executes a set of operators.
In-Flight Records. These are records that have been produced
by an operator since the last successful checkpoint; i.e. their ef-
fects have not yet been recorded to the downstream operators’
state. Tasks that send their output to downstream tasks (#1, #2,
and #3) maintain a log of the in-flight records in memory until the
next checkpoint is complete. This practice is the foundation of the
upstream backup strategy [28].

Figure 1 captures a snapshot of the execution when the job is
processing records of the yellow epoch.When a record reaches Task
#2, it is processed and the output record (assuming for simplicity
a function that produces a new record for each input record) is
put in the output queue. Once the output record is transmitted
over the network, it is added in the in-flight log. The in-flight log is
segmented into epochs, such that whenever a checkpoint completes,
all records in epochs prior to the checkpoint can be removed.
Log of Nondeterministic Events. Tasks maintain a log [21] of
determinants for recording information about nondeterministic
events and operations. In addition, each task shares its log incre-
mentally with downstream tasks as we describe in Section 4.3. We
present the different types of nondeterministic events and opera-
tions in Section 4.
Standby Tasks & State Snapshots. In high availability mode
Clonos deploys standby tasks that mirror operator state, but remain
idle in that they do not take part in data processing. Each standby
task receives state snapshots of its corresponding running task after
each checkpoint.

SRC1. ...
2. ...

Causal Log

Task #3

Standby Task #4

1. ...
2. ...

1. ...
2. ...
3. ...

1. ...

⋈ SINK

1. ...
2. ...

Task #4

Causal Log

3
Request

Log

SRC σ {UDF} π
Standby Task #2

1. ORDER 1
2. TIMER id=X
3. HTTP {"a":3}

Log #2
1. ...
2. ...

Log #1

1. CHK RPC
2. TS 161...3
3. TS 161...7
4. CHK RPC
5. TS 161...9

Log #1

In-Flight Log

HTTP
1

2
3

1 2

Output Queue

In-Flight Log

12

Output Queue

1

23

Standby Task #1

Task #1

Task #2

SerializerDe
serializer

σ {UDF} π
SRC

Causal Log

Causal Log

Serializer
De

serializer ⋈ SINK

De
serializer

Causal Services

1

2

2

4

Activate
Standby

Reconfigure
Network

Reconfigure
Network

Request
In-Flight
Records

In-Flight Records

5
Replay

Records 12

6 Deduplicate

1

1. ...
2. ...
3. ...

Figure 2: Steps of the fault recovery protocol.

2.2 Recovery protocol
Let’s assume that right after the execution snapshot depicted in
Figure 1 a failure kills task #2. Figure 2 highlights the steps of our
recovery protocol.
1. Activate New/Standby Task. The job manager initiates the
fault recovery procedure, which starts a replacement task. In high
availability mode, the topology maintains shadow/standby tasks
that already contain the latest checkpointed state and remain idle
until they are instructed to run by the job manager.
2. Reconfigure Network Connections. The standby task dynam-
ically connects with the upstream and downstream task(s) of its
predecessor in the topology.
3. Retrieve Determinant Log. The recovering task retrieves its
predecessor’s determinant log from its downstream task(s).
4. Request In-Flight Records. In parallel to step 3, the standby
task sends an in-flight log request to its upstream task(s) which
specifies the epochs to replay.
5. Replay In-Flight Records. Each upstream task replays its in-
flight records for the requested epoch and channel. In this case
task #1 will replay the records of the yellow and green epoch in
order. The recovering task (task #2) begins processing these records.
Whenever it reaches a nondeterministic operation, the task instead
reads from the determinant log the expected result of the operation.
6. Deduplicate Output. In parallel to step 5, the recovering task
uses its determinant log to ignore output that its predecessor pro-
duced before failing. These output records are instead used to re-
build the in-flight log state.
Clonos’ recovery protocol differs in a number of ways from up-
stream backup [28] where upstream tasks replay the output records
to recovering downstream tasks. Specifically, our protocol:

• uses checkpoints to reduce the duration of replay,
• uses determinants to deduplicate records at the sender
following a failure, and to capture many sources of non-
determinism that we describe in the paper, and

• is optimized for the architecture and capabilities of today’s
distributed streaming systems, which feature shuffles, asyn-
chronous data transfer, checkpoints, processing-time seman-
tics, out-of-order processing, and communication with ex-
ternal services.

2.3 Applicability & System Requirements
Clonos makes two assumptions. The first is the existence of reli-
able FIFO channels between a pair of tasks, i.e., for each channel,
the downstream task receives all records in the same order that
the upstream task has produced them. The second assumption is a
checkpoint mechanism that creates snapshots of the system’s global
state in regular intervals. Although our concrete implementation
of Clonos is in Apache Flink v1.7, both assumptions are satisfied by
mainstream streaming systems. For instance, Apache Samza [36],
ibm Streams [29], and the latest version of Spark [8] also provide
such FIFO channels, while Streams, Jet and Trill support check-
points. Clonos’ approach can also be easily adapted to systems
using uncoordinated checkpoints, through the use of backwards
flowing checkpoint complete notifications.

Clonos’ implementation requires extendingmultiple system com-
ponents such as the job manager, scheduler, checkpoint & fault
tolerance mechanisms, the network stack, and the base stream
operators. Clonos’ implementation is available online.1

3 PRELIMINARIES
This section provides the necessary background on the concepts
used throughput the paper. We focus on current recovery mecha-
nisms for stream processing and how these relate to rollback recov-
ery schemes and causal logging.

3.1 Streaming Model
Stream processing systems [2, 12, 29, 36] process unbounded col-
lections of records continuously by ingesting them into a dataflow
graph where edges denote record streams and vertices denote opera-
tors. Each operator, receives records from an upstream operator, ap-
plies a computation on those records, and produces output records
that it sends to the next operator(s) downstream. Each operator that
produces output retains output buffers for sending output records
downstream efficiently in batches.

3.2 Checkpoint-based Rollback Recovery
The main fault tolerance mechanism in modern scale-out streaming
systems such as Apache Flink, IBM Streams, Trill, and Jet, is con-
verging towards periodic Chandy Lamport-style [15] checkpoints

1https://github.com/delftdata/Clonos

https://github.com/delftdata/Clonos

of the system’s global state [10, 12, 14, 29]. To recover from a failure,
systems roll back the state of all operators to the latest checkpoint
and resume data processing from a specific input offset, possibly
replaying part of the computation that was lost during failure. This
stop and restart strategy can achieve exactly-once processing guar-
antees [10]: the effects of all input records will affect the system’s
operator state exactly-once. However, as the execution graph grows,
so does the downtime and latency incurred by the restart. In the
event of a single failure the complete execution graph needs to be
torn down and restarted from the latest global checkpoint.

This can be fixed with local rollback recovery schemes that, in-
addition to the checkpoint also store in-flight records: a copy of all
records they have produced since their last checkpoint. If a task
fails, the system can roll back to its last checkpoint and replay its in-
coming records from the upstream tasks. Local recovery approaches
that use in-flight logs [22, 35] can recover faster, but require two
restrictive assumptions: 𝑖) that operators are deterministic (Sec-
tion 4), i.e., reprocessing the same record a second time will yield
the same output, and 𝑖𝑖) that each record can be identified uniquely
via a logical timestamp. During replay, tasks downstream from the
failure can apply dedupication using these timestamps. Clonos lifts
those long-standing restrictions using causal logging.

3.3 Log-based Rollback Recovery
Log-based rollback recovery has been extensively studied in the
context of distributed systems. A stream processing system can be
seen as a message-passing system executing processes that send
and receive messages. In the sequel, we will refer to messages as
records. Log-based approaches rely on the piecewise deterministic
assumption [20], which states that all nondeterministic events can
be identified, and the system can log their determinants. To repro-
duce a nondeterministic event2 𝑒 (e.g., a timer, a random number,
the result of a call to an external service/system), one must store
the event and its determinant, denoted by #𝑒 .

However, having the determinants alone is not enough to replay
the nondeterministic events. To replay record reception events, it is
required that the record contents be replayed as well. This can be
done in one of two ways: 𝑖) either the receiver can log the record
contents together with the determinants or 𝑖𝑖) the sender can keep
a log of the sent messages that are not yet stable in a so-called
in-flight record log. The second case is more common, because the
first requires logging a large number of messages in stable storage.
Instead, the in-flight record log can be kept in volatile memory,
because after a failure it can be deterministically rebuilt using the
input streams and determinants.

3.4 Causal Logging
Causal logging [5, 19] is a log-based rollback recovery approach
particularly well-suited to stream processing. Unlike pessimistic
logging, causal logging maintains the determinant log in-memory
and unlike optimistic logging it ensures the always-no-orphans prop-
erty [3] (Equation 1), allowing for localized recovery. An orphan
process is defined as a process whose state depends on a nondeter-
ministic event 𝑒 that cannot be reproduced during recovery [20].

2Not to be confused with stream events which are used interchangeably with records
in database research nomenclature.

If a nondeterministic event cannot be reproduced, then the state
of orphaned processes must be rolled back to before that event, in
order to ensure consistency.

∀𝑒 : □(¬ Stable(𝑒) =⇒ Depend(𝑒) ⊆ Log(𝑒)) (1)

where Depend(𝑒) is the set of processes whose state was affected
by 𝑒 according to the happens-before relationship. Log(𝑒) is the set
of processes that have logged 𝑒’s determinant in volatile memory
and Stable(𝑒) is a predicate which becomes true when 𝑒’s effects
are stored in stable storage (i.e. checkpointed). Finally, the operator
□ is the temporal always operator.

Causal logging ensures that either 𝑖) all processes that depend on
𝑒 have logged its determinant or 𝑖𝑖) 𝑒 is stable. If a set of processes F
fails, then for all non-stable events 𝑒 either Depend(𝑒) ⊆ Log(𝑒) ⊆
F , in which case there is no orphan, or Depend(𝑒) ⊆ Log(𝑒) ⊈ F
in which case at least one surviving process has the determinant of
e, and can share it with the recovering processes.

Causal logging can be optimized by ensuring that no unnecessary
determinants are sent to processes that do not depend on them by
strengthening the always-no-orphans property as follows.

∀𝑒 : □(¬ Stable(𝑒) =⇒
((Depend(𝑒) ⊆ Log(𝑒) ∧ ⋄(Depend(𝑒) = Log(𝑒))))) (2)

This property conveys that, while 𝑒 is not stable, all processes
dependent on 𝑒 must have logged it and – eventually ⋄ – the ones
that have logged it will be no more than those who depend on it.
However, processes only depend on events of other processes if
they receive messages from them, because those events happened
before the delivery of the message. Thus, there is no need to send
extra messages containing determinants, since the determinants
a process needs can be piggybacked on the message that makes it
causally dependent on those determinants.

Finally, in causal logging if the number of possible concurrent
failures is bound to be not greater than a value 𝑓 , it is possible to
implement stable storage while avoiding disk access by logging to
𝑓 + 1 processes [4]. In this case, one process may avoid sending its
determinants to processes that have not logged them, if enough
processes have already logged them for them to be considered
stable.

∀𝑒 : □((| Log(𝑒) | ≤ 𝑓) =⇒
((Depend(𝑒) ⊆ Log(𝑒) ∧ ⋄(Depend(𝑒) = Log(𝑒))))) (3)

4 DEALINGWITH NONDETERMINISM
Nondeterminism causes a lot of issues with the recovery of stream-
ing topologies. The main issue arises when, upon failure and recov-
ery, one needs to deduplicate records which have been generated
twice, during replay. If the recovering operator (the one producing
the duplicates) is deterministic, downstream operators can sim-
ply eliminate the duplicate records, because they know they have
received them before. However, if the recovering operator is nonde-
terministic, it means that upon recovery, it may generate different
records and/or in a different order. In that case, the downstream
operators cannot correctly eliminate duplicates as they cannot dis-
tinguish them from non-duplicates. This is a very simplistic exam-
ple of the relationship of local recovery schemes and determinism.

Clonos is the first local recovery scheme to offer exactly-once pro-
cessing guarantees in in the lack of determinism by tracking all
sources of nondeterminism, and by leveraging causal logging.
Causal Logging for Stream Processing. Clonos leverages causal
logging [19] to address the issues of nondeterminism. Unlike
message-passing systems, the dataflow operators that process a
streaming query are multi-threaded, including threads for data pro-
cessing, timers, networking, flushing and receiving RPCs. Most of
the different threads affect state and generate records at arbitrary
system time that affect processing. In addition, a stream processing
system offers operations that rely on system or processing time,
such as processing time windows. All of these nondeterministic
computations and functions need to be controlled in order to pro-
vide replayable job executions in a streaming system.

In the rest of this section, we analyze the sources of nondetermin-
ism (Section 4.1), and elaborate how we deal with them (Section 4.2)
including what we term causal services – a programming abstrac-
tion to support nondeterminism for system programmers but also
to users authoring UDFs. In Section 4.3 we present the causal log
and in Section 5 we discuss how Clonos guarantees exactly-once
processing. Figure 3 depicts the concepts discussed this section.

4.1 Sources of Nondeterminism
We now exhaustively list the sources of nondeterminism that can
be found in most modern stream processing systems.
Windowing & Time-Sensitive Computations. Streaming com-
putations very often manipulate the inherent time dimension of
data, which is based on event-, processing-, or ingestion-time. Of
those, processing-time and ingestion-time are nondeterministic be-
cause they rely on the local system time at the operator where they
are being processed. More specifically, when processing ingestion-
time windows, the source operator simply adds a field in the record
marking when that record entered the system. Upon a failure and re-
play, the ingestion time will change (the system time at the sources
has changed), and windowing computations may not return the
same results. The same holds for processing-time windows, which,
instead of taking into account the ingestion time of records, simply
trigger in periodic moments in time using timers, based on the local
clock of the windowing operator.
Event-TimeWindows&Out-Of-Order Processing. Event-time
is quite different to processing-time. It is the time the records are
generated in the input sources (e.g. sensors and mobile devices). In
its simple form it is deterministic: no matter how many times one
replays a stream, the event-time of each record does not change.
However, event-time introduces another complexity: the possibility
of records arriving from input sources out-of-order due to network
congestion or other reasons [40]. Streaming systems like Google
Dataflow, Apache Beam & Flink accept out-of-order events up to
a lateness bound based on a low-watermark [33]: a marker gener-
ated at the input sources according to wall clock time that is then
embedded in the data stream. Since low-watermarks are generated
according to wall clock time, using timers, they are nondetermistic.
Timers. Timers are programmatic hooks which can be set to ex-
ecute at some point in the future. Both the system and users can
register timers. The triggering of timers is controlled by a timer

thread, and the interleaving of operations between two threads is
nondeterministic.
User-Defined Functions & External Calls. User-defined func-
tions are not sandboxed: they are allowed to call external services,
reach external key-value stores, and also make other asynchronous
calls. Every interaction with the outside world is not expected to be
deterministic. Consider, for example, a call to an external database
that queries the current stock price; this can change at any point
in time. As a result, calling external services cannot be considered
deterministic and, during recovery, computations can change.
RandomNumbers.Users may want to use random numbers in op-
erators. Pseudo-random number generators are typically initialized
using the current time producing nondeterministic results.
Keyed Streams & Record Arrival Order. To parallelize and
group streams, it is common to partition them using a partitioning
key. We refer to such a stream as a keyed stream. Downstream
operators (e.g. a reduce operator) receive inputs from multiple
upstream operators, on a per-key basis. The issue here is that, de-
pending on the network speed, the connection between various
operators, etc., the order in which records arrive is not always the
same upon recovery. A lot of times, operators are order-sensitive;
in that case, the operator will also generate records in a different
order than the one before the failure happened. In other words,
operators that process multiple inputs are not deterministic. To
make it deterministic, we need to fix the order in which records are
replayed on recovery (see Section 4.2).
Checkpoints & Received RPCs. Checkpoint-based fault toler-
ance protocols inject checkpoint barriers into the dataflow graph
that instruct operators to checkpoint their state as they pass through
them. Those barriers are injected in the dataflow graph through an
RPC according to the system time of the job manager (e.g., every
10 seconds). Any RPC received by a task which affects its state is
nondeterministic.
Output Buffers. Records are grouped into buffers before they are
sent downstream. Buffers are sent either when they are full or when
the downstream task demands a buffer.3 In the latter case, the buffer
might not be complete. Thus, the decision of whether the buffer
will be split or not is very time-dependent and also depends on the
request coming from downstream. This introduces nondeterminism
in the size of buffers sent downstream that needs to be taken care
of, such that the buffers can be retransmitted in the very same way
during recovery.

4.2 Abstracting Nondeterminism with Services
To hide the complexity of causal logging and recovery from users
that code user-defined functions (UDFs), operators have access to
“causal services” that abstract the complexity away. For instance,
assume that in Figure 3 a user-defined function calls the Timestamp
service, which returns timestamps. Under normal operation, the
service generates a nondeterministic timestamp and appends it in
the causal log. During recovery, when the user-defined function
requests a timestamp from the Timestamp service (shown in List-
ing 1), the service will instead return a timestamp read from the

3To handle backpressure, streaming engines allow downstream operators to either
pause transmission or force the transmission of a buffer as soon as it contains a record.

1. ORDER 1
2. TIMER id=X
3. TS 161...7
4. HTTP {"a":3}
5. RNG 3842

Main Thread
Log

Task #2

Services

Causal Log Manager

Operator Logic

1. BS 32768
2. BS 14572

Output
Queue LogOrder

Timer

HTTP

1
23 RNG

Timestamp

Serializer
Output
Queue

Keyed
Streams

Time
Windows

Watermarks

Load
Balancing

{UDF}
User
Defined
Functions

Non-
deterministic
buffer sizes

Figure 3: Services offered by the causal log’s services API.

causal log. Users can register their own nondeterministic computa-
tions in Clonos by providing an anonymous function as in Listing 2.
Determinants and causal logging, as well as recovery in all cases are
done transparently. Behind the scenes, Clonos applies the anony-
mous function as Listing 3 shows. We describe the built-in causal
services below.
Record Processing Order. The Order service is an internal ser-
vice (not exposed to users), which logs the order in which input
records are processed. For performance, this is done at the level
of buffers, and each buffer is fully processed before the next is
deserialized.
Timers&ReceivedRPCs.Timers fire asynchronously to themain
thread, thus their recovery is more complex. We first introduce
unique IDs to every timer callback function. Then, we modify timer
internals to register a “TimerFired” determinant in the causal log,
containing its ID and stream offset at which it fired. During recovery,
if a “TimerFired” determinant is encountered, we wait for the same
stream offset to be reached. We then use the timer ID to obtain and
execute the corresponding callback. RPCs received by an operator
are treated similarly.
Wall-Clock Time.When the Timestamp service is used to retrieve
wall-clock time under normal operation, the service retrieves a
timestamp from the system and logs it prior to returning it to the
user. During recovery, the same service will return the logged times-
tamp instead of a fresh wall-clock timestamp. Since this service
may be called multiple times per millisecond, if the time granu-
larity allows it (e.g., asking ms-granularity timestamps multiple
times within the same ms), instead of generating a new timestamp
on every call, this service utilizes timers to only update a stored
timestamp periodically (each ms in this case). In between updates,
the service simply returns its cached timestamp. This reduces the
amount of determinants generated by two orders of magnitude
without a large loss in time granularity.
Calls to External Systems.Calls to external systemsmust be done
through causal services (e.g. the HTTP service), which persistently
record the response in the log. The response can then be deserialized
from the log during recovery.
Random Numbers. Instead of storing the numbers generated, the
RNG service generates a new random seed on every checkpoint
and stores it in the log. During recovery, the seed is read from
the log and the numbers generated can then be deterministically
reproduced.

HTTPResponse response = ctx.getHTTPService().get("host:port/path");
long ts = ctx.getTimestampService().currentTimeMillis();

Listing 1: Using built-in services.

CausalService myService = ctx.buildService(input -> {
// The user provides any nondeterministic logic and simply returns
// an object that implements the Serializable interface.

});
//User can later use this logic with any input argument i
Output o = myService.apply(i);

Listing 2: Boilerplate to add a new causal service in a UDF.

class CausalService<I, O extends Serializable> {
Function<I, O> f; //defined when service is built
public apply(I input) {

Output determinant;
if (recoveryManager.running()) //Normal operation
determinant = f.apply(input);

else // Recovery phase
determinant = recoveryManager.replaySerializable();

causalLog.append(determinant);
return determinant;

} }

Listing 3: Internal causal service logic.

4.3 Causal Log
The causal log stores the determinants for every nondeterministic
event executed by a task. It is split in two parts. There is a causal
log for the main thread of a task and a separate causal log for each
of the output channels in that operator.

In a typical message passing system with a single thread of
execution, causal logging [19] would require maintaining only one
log generated by that single thread of execution. However in a
typical scale-out streaming system, the main processing thread
is separate from the network threads for performance, and they
communicate through shared data structures. As the main thread
writes to an output buffer, the output queue may decide to send the
non-full (nondeterministically sized) buffer downstream. Thus, each
queue has a causal log, where the size of buffers sent is recorded
(Figure 3). This log is used during recovery for deduplication.
All Buffers Carry Determinants. Whenever a buffer of data is
sent downstream, a causal log delta piggybacks on that buffer. The
delta contains all the entries of the output queue logs and the
main thread log since the last buffer dispatch. Note that the main
thread log is essentially replicated to all downstream operators, as
formally required by causal logging [19]. The idea behind this is
that whenever a downstream operator receives determinants, those
should be able to fully restore the upstream operator.
Replicating Determinants to Downstream Tasks. The down-
stream task, upon receiving the buffer and the delta of the two
logs, appends those updates to the corresponding task causal log.
In this way, before data is allowed to affect the state, the causal
information necessary to recover it is already stored. In order to be
able to afford two successive tasks failing, one might also want to
replicate the determinants of each task to a deeper sharing depth.
Truncating Causal Logs. The causal log is organized in segments
according to epochs and is truncated whenever a checkpoint com-
pletes; the causal log is only needed in the middle of an epoch,
when a local recovery has to complete using in-flight logs and the
older checkpoint as we describe in the next section.

DSD = D

∀𝑒 : □(¬ Stable(𝑒) =⇒ ((Depend(𝑒) ⊆ Log(𝑒)))) (Eq. 2)

Log(𝑒) ⊆ F
(no surviving process with #𝑒)

Depend(𝑒) ⊆ Log(𝑒)
(no surviving process depends on 𝑒)

Recover without determinant

Log(𝑒) ⊈ F
(∃ surviving process with #𝑒)

Recover using determinant

DSD < D

∀𝑒 : □((| Log(𝑒) | ≤ DSD) =⇒ ((Depend(𝑒) ⊆ Log(𝑒)))) (Eq. 3)

Log(𝑒) ⊈ F
(∃ surviving process with #𝑒)

Recover using
determinant

Log(𝑒) ⊆ F
(no surviving process with #𝑒)

Depend(𝑒) ⊈ F
(orphaned process)

Trigger global rollback

Depend(𝑒) ⊆ F
(no orphaned process)

Recover without determinant

Figure 4: Exhaustive list of failure cases & DSDs with the recovery scenarios that need to be followed in each case.

5 EXACTLY-ONCE RECOVERY
In this section we show how Clonos deals with recovery and how
it guarantees exactly-once processing with local recovery, using a
causal log and in-flight records. In Section 5.5 we describe how we
could extend Clonos to guarantee exactly-once output.

5.1 Lineage-based Replay
When a new task replaces a failed task it needs to process the records
of the current checkpointing epoch. Therefore, it requests from its
upstream tasks to replay their in-flight record log. Upon the in-flight
log request, upstream tasks start to replay the buffers contained in
their in-flight log, in the same order they were dispatched prior to
failure. The replay protocol of Clonos is based on lineage. If a task
does not have an in-flight record log to replay for a downstream
task (typically because itself just recovered from a failure), it will
ask its upstream tasks to replay their in-flight record log. This
lineage-based process can reach recursively the operator graph all
the way up to the input sources, which we assume to be available
to provide their input on demand.

5.2 Determinant-based Deduplication
When recovering a task, the task replays the received in-flight
records and produces output. Achieving exactly-once processing
when performing local recovery requires deduplication after replay.
In prior work [22], such deduplication is rather simple: each opera-
tor is considered to be deterministic, and all produced records bear
a logical timestamp. The downstream operator can simply discard
the records bearing the already seen logical timestamps. However,
receiver-based deduplication wastes bandwidth.

Instead, deduplication in Clonos is done in two concurrent steps.
First, as the main processing thread recovers, it uses its causal log to
produce the exact same output records. Concurrently, the network
channel threads use their causal logs, which contain only informa-
tion about the size of buffers received downstream, to reconstruct
the same buffers as sent before.

5.3 Correctness of Recovery Scheme
In the following, we analyze the conditions under which recovery
can be performed using determinants depending on the depth to
which determinants are shared. The correctness of causal logging as
a rollback recovery approach has been formally proven in the past

[3, 5]. Since Clonos tracks nondeterminism for multiple threads
(the main processing thread and one thread per output channel),
we model each thread as a process and recover them in unison.
Thus, the proofs applicable to pure causal logging trivially extend
to Clonos. However, ensuring exactly-once processing when lo-
cally recovering a failed operator remains open; we show Clonos
guarantees it in the following paragraphs.

We base our reasoning on exhaustively enumerating the differ-
ent states that the recovery mechanism can reach, depending on
the determinant replication strategy and different failure scenarios.
Our aim is to show that independently of: 𝑖) how the determinants
are shared with downstream operators, and 𝑖𝑖) which failure sce-
nario takes place, there is a mechanism to recover the topology
with exactly-once processing guarantees. This is done either by
retrieving determinants and deduplicating using them or by falling
back to restarting the complete dataflow graph as in reference [10].

Assume that in a dag composed of N tasks with a maximum
depth 𝐷 (source tasks have a depth of zero) F ⊆ N tasks fail.
Clonos can be configured to use a determinant sharing depth (DSD)
as large as the graph depth or smaller than the graph depth. The
determinant sharing depth also defines the number of consecutive
tasks that can fail concurrently without creating orphan tasks. For
instance, a sharing depth of two, means that the determinants of a
task 𝑎 are sent to the downstream task 𝑏 directly, and 𝑏 forwards the
same determinants to its downstream tasks 𝑐 and 𝑑 . If both 𝑎 and 𝑏
fail, we can recover them from the determinants that are stored by
𝑐 and 𝑑 . In the following, we analyze the different recovery cases,
as depicted in Figure 4.
Case 1: 𝐷𝑆𝐷 = 𝐷 . We deal first with the case where the deter-
minant sharing depth equals the depth of the dataflow graph, i.e.,
𝐷𝑆𝐷 = 𝐷 . Note that in this configuration Clonos follows the condi-
tion stated in Equation 2. As such, determinants for a nondetermin-
istic event 𝑒 whose effects have not yet been globally checkpointed,
are propagated to all downstream processes. Determinants piggy-
backed on a buffer are logged by a task (processed by the causal log
manager) before the operator state becomes dependent on them
(before the operator processes the buffer’s records), and as such at
no moment do we break the condition that Depend(𝑒) ⊆ Log(𝑒).
Two failure cases can occur:

• Log(𝑒) ⊆ F : Since the condition Depend(𝑒) ⊆ Log(𝑒) also
holds, then no surviving process depends on 𝑒 , meaning that

a different execution path may be taken without breaking
consistency or the always no-orphans condition.

• Log(𝑒) ⊈ F : At least one surviving process has the determi-
nant of event 𝑒 , in which case it guides the recovery, either
by ensuring the main thread follows the correct execution
path or by ensuring an output thread deduplicates a buffer
and thus the records it contains.

Translating this to stream processing: this case can only happen
when for the failure of a given task, all downstream tasks also fail, as
otherwise, downstream tasks will have the necessary determinants
to bring the failed tasks into a consistent state with the surviving
downstream tasks. The extreme case happens when F = N , in
which case no task is dependent on any other and recovery is effec-
tively equivalent to restoring a global checkpoint and beginning
replay from the graph’s input sources.
Case 2:𝐷𝑆𝐷 < 𝐷 . In the case where the determinant sharing depth
is less than the depth of the dataflow graph, Clonos follows the
condition of Equation 3 by not sharing 𝑒’s determinant to a depth
greater than𝐷𝑆𝐷 . In this case, there is the possibility that Log(𝑒) ⊆
F ⊈ Depend(𝑒), meaning that some orphaned process remains.
When one of the orphaned processes receives a determinant log
request from a recovering task for a log it does not have, it will
escalate this to the JobManager, which will trigger a full rollback of
the dag, thus achieving exactly-once processing guarantees. The
alternative case is that Log(𝑒) ⊈ F , in which case at least one
surviving task has the determinants of nondeterministic event 𝑒 ,
and can guide the recovery of the failed tasks which depend on it.

Summarizing, the recovery cases depicted in the leafs of the trees
in Figure 4, show that there are cases 𝑖) when the determinants are
not required for recovery, 𝑖𝑖) when determinants are required and
can be found in some surviving task, and, finally 𝑖𝑖𝑖) (the worst
case) when the topology can recover with a global rollback recovery
mechanism.

5.4 Trading Correctness for Performance
Clonos is flexibly configurable in terms of its fault tolerance guar-
antees. By combining its different building blocks, it can achieve
different processing guarantees, as follows.
At-most-once. By disabling both in-flight logging and causal log-
ging/determinants, failed tasks will be recovered with gap recovery
[28], leading to inconsistent state with at-most-once processing
guarantees, but incurring very little overhead.
At-least-once. By setting the determinant sharing depth 𝐷𝑆𝐷 = 0,
only in-flight logging is enabled, and failed tasks are recovered with
divergent rollback recovery, achieving at-least-once processing
guarantees with very little overhead due to Clonos’ no-copy in-
flight log (Section 6.1).
Exactly-once. By enabling causal logging it is possible to perform
consistent recovery on failed tasks, providing exactly-once process-
ing guarantees, again with little overhead. If the overhead of causal
logging becomes a concern, Clonos can also trade-off determinant
sharing depth for performance. The determinant sharing depth
is set to the depth of the graph by default, but by lowering it to
another number 𝑓 , the determinant sharing overhead is reduced in
exchange for supporting at most 𝑓 concurrent consecutive failures.

In this case, if a larger than 𝑓 number of failures happens, Clonos
can again be configured to favour either 𝑖) availability with at-least-
once guarantees (skips deduplication step), or 𝑖𝑖) consistency by
falling back to recovery using the latest global checkpoint [11].

5.5 Achieving Exactly-once Output
There are two common methods for achieving exactly-once out-
put4 in stream processing systems. The first solution is idempotent
sinks [6–8] and the second is transactional sinks [8, 10]. The idem-
potent sinks do not work in the face of nondeterminism, while the
transactional sinks introduce latency proportional to the checkpoint
interval. Clonos, can be trivially extended to achieve exactly-once
output by piggybacking serialized determinants on records sent
to downstream systems (e.g. Kafka). This downstream system has
to store these determinants, and be able to return them when re-
quested. The determinants of a previous epoch can be truncated
after each checkpoint. In this way, Clonos can achieve very low-
latency exactly-once output since the outputs can be consumed
already by external systems without having to wait for a checkpoint
to complete and the transactional sinks to perform a two-phase
commit.

6 SYSTEM DESIGN DECISIONS
In this section we detail the interesting and non-trivial design deci-
sions of the various building blocks comprising Clonos.

6.1 In-flight Record Log
Clonos stores in-flight records in each task that sends its output
to other tasks downstream. Because an upstream task may send
records to multiple tasks downstream, the records are logged by
output channel (partition), which corresponds to a specific con-
nection with a downstream task. To optimize throughput, Flink
sends records downstream, serialized in network buffers. Clonos
logs these buffers in the in-flight log before they are sent.
Avoiding Buffer Copies. Normally, when a buffer is sent over
the network, it needs to return to the buffer pool of the output
channels and be recycled. However, the in-flight log also needs to
store that buffer. One choice would be to copy it over, and then
recycle the buffer. However, to avoid copying buffers, whenever a
buffer is dispatched from the network layer downstream, the output
channel simply hands over that buffer to the in-flight record log.
This, however, can cause deadlocks: the output channels could be
waiting for buffers to become available in order to serialize output
records, but no buffer would be available if they would all be used
by the in-flight log.
Large Buffer Pools & Backpressure Delay. After going through
multiple design and implementation iterations optimizing through-
put and latency, we opted for the following strategy. As seen in
Figure 1, each channel maintains two buffer pools. One buffer pool
serves the output channels and the other buffer pool serves the
in-flight log. When the network layer hands over a buffer to the
in-flight log, in exchange, the in-flight log hands over an empty
buffer to the buffer pool of the output channel. Interestingly, in
our experiments we have seen that a network connection between

4This is also known as the output commit problem [20]

two operators needs around 10 buffers per channel - not more.
Adding more buffers to output channels might look rational but
it has an important side effect. It breaks the natural backpressure
mechanism. The more buffers available for output, the slower the
reaction of upstream operators to slowdowns from downstream
operators, delaying the backpressure messages to propagate back
to the sources. That is precisely the reason why Apache Flink, by
default, uses a very small buffer pool for output.

Clonos, however, has to address an additional issue owed to the
small number of buffers available to the output queue. While a task
upstream of a failure replays buffers to the recovering task down-
stream, its main processing thread continues to produce records
that very quickly fill the buffers available to the output queue as
those buffers cannot be sent before the replay completes. With no
buffers available processing stops for all output partitions/channels
of the task. This issue conflicts the philosophy of Clonos that the
system should never stop making consistent progress. We solved it
by placing the buffers at the back of the in-flight log even though
they were still unsent. This is allowed because if the downstream
is failed, then we are guaranteed to replay them at a later time.
Spilling to Disk. Our in-flight log is segmented into epochs, and
whenever a checkpoint completes successfully, the in-flight log is
truncated up to that checkpoint, making the data buffers available
in its local buffer pool. The in-flight record logs are kept in mem-
ory by default. Depending on the checkpoint frequency and input
throughput pace, the in-flight log may grow beyond the size of the
log’s buffer pool leading to blocked processing and backpressure.
To counteract this issue, we introduced an asynchronously spilling
in-flight log, that persists buffers to disk (Figure 1), recycling them
whenever necessary. The spilling in-flight log transitions seemlessly
from on-disk buffers to in-memory buffers and prefetches on-disk
buffers to speed up the replay process. It functions according to the
following four (configurable) policies.

• In-memory: keep all buffers in memory.
• Spill-epoch: spill each epoch as soon as the next one starts.
• Spill-buffer: spill each buffer as it arrives.
• Spill-threshold: Spill all buffers whenever the buffer pool’s
ratio of available buffers drops below a configurable fraction.

The in-memory and spill-epoch policies both suffer from the pos-
sibility of blocking processing when the checkpoint interval is too
large. Instead, the spill-buffer approach entails additional synchro-
nous work that creates increased overhead and lacks batching of
I/O operations. The spill-threshold approach offers a well-rounded
solution to the above issues.

6.2 Network Channel Reconfiguration
Clonos applies reconfiguration of network channels dynamically
in order to introduce a new task in the topology. Once the new task
receives the acknowledgment from an upstream task, it requests to
establish a persistent network connection with its upstream tasks.
After a new connection has been setup, the lineage-based replay
protocol can begin.

We found it particularly challenging to re-engineer the network
stack in order to establish connections of tasks while jobs were
executing. Themain issuewas to align network buffers and counters
that match buffer sequence ids. In addition, record deserializers per

input channel often keep state from one buffer to the next as they
wait to receive the remaining part of a record with the next buffer.

6.3 Standby Tasks
Each standby task mirrors a running task. It contains the same
processing logic and stores the same type of state as the one it
mirrors. If a running task fails, its corresponding standby task
substitutes it. In contrast to a running task, its standby task remains
idle unless it is commanded to run.

The allocation strategy of standby tasks underlies an important
tradeoff between resource utilization and failure safety, even per-
formance. By controlling the affinity and anti-affinity of standby
tasks’ allocation, stream processing jobs can tune the amount of
compute nodes they utilize for standby tasks. Each saving in re-
source utilization directly reduces Clonos’ safety guarantees since
co-locating two or more standby tasks on the same node makes
Clonos more susceptible to a potential failure of that node.

Performance is another factor to weigh in when deciding the
placement of standby tasks, i.e. their allocation strategy. Depending
on a job’s processing, co-locating two specific tasks may be critical
for performance. If performance optimization is more important
than failure safety, a job may choose to co-locate the corresponding
standby tasks. By default, Clonos allocates standby tasks using the
same allocation strategy provided by a job for the running tasks.

6.4 State Snapshot Dispatch
Similarly to related work [28, 32], Clonos transfers the state snap-
shot of each running task to its corresponding standby task once a
checkpoint is complete. Clonos’ state snapshot dispatch can lever-
age the various approaches offered by the underlying system, such
as direct transfer to the local disk of the standby task via a file url
or transfer to a shared file system. In addition, if the state backend
supports incremental checkpoints then the cost of dispatching state
depends on the state’s delta instead of its absolute size. By receiving
state snapshots regularly, standby tasks are behind their running
counterparts only by a checkpoint or less.

It is important to note that the state transfer process is bound by
checkpoint frequency and checkpoint duration, which depends on
the state size. A state snapshot should not take longer to dispatch
to a standby task than the job’s checkpoint frequency. In practice,
however, this can be avoided if concurrent checkpoints are never
performed. Under these assumptions, a checkpoint is guaranteed to
complete before the next one begins and state transfer is expected
to complete before the next checkpoint’s completion when using
a distributed file system. Finally, if a standby task is called to run
while a state snapshot is in transit Clonos will wait for the transfer
to complete before starting the execution of the standby task.

7 EXPERIMENTAL EVALUATION
In this section, we first present our experimental methodology
for running two categories of experiments: overhead experiments
where we measure the overhead of Clonos in terms of throughput
and latency under normal operation, and failure experiments where
we study Clonos’s fault recovery. In both cases, we compare with
Flink, the engine on which our changes were introduced.

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
91

1.
00

0.
96

1.
00

0.
84

1.
00

0.
85

0.
92

0.
99

0.
99

0.
95

0.
91

0.
99

0.
94

1.
00

0.
96

0.
97

0.
78

0.
96

0.
74

0.
93

0.
98

1.
00

0.
94

0.
96

0.
97

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q11 Q12 Q13 Q14
Flink Clonos (DSD=1) Clonos (DSD=Full)

Figure 5: Relative throughput of Clonos (with DSD=1, DSD=Full) compared to "vanilla" Flink’s recovery mechanism, under
normal operation. The experiment performed on Nexmark queries.

7.1 Setup
We evaluate Clonos on a Kubernetes cluster hosted on a Cloud
environment. The Kubernetes cluster hosts a 3-node Kafka cluster,
which serves both as the data source and data sink of the failure
experiments. An HDFS deployment, with a single NameNode and
three datanodes, stores the operators’ checkpoints. Finally, the
Kubernetes cluster hosts a Flink cluster with 150 TaskManagers,
each containing a single task slot. Each TaskManager has access to
2GB of memory, and two processing cores.

A given configuration’s throughput is measured by sampling
the Kafka cluster three times per second for the number of records
in the output topic. Dividing the number of new records by the
elapsed time, we obtain real-time throughput. A given configura-
tion’s latency is measured by sampling the output Kafka topics
from each job and computing the output records’ latency. Finally,
we configure Flink to offer the fastest possible recovery, so as to pro-
vide a fair comparison. This means lowering the failure detection
parameters to values not recommended for use in production. In
particular, heartbeats are sent every 4 (default: 10) seconds, timing
out after 6 (default: 60) seconds.

7.2 Workloads
Nexmark. Since Clonos can be a drop-in replacement for Flink
jobs, we used the Nexmark [43] benchmark, along with the extra
queries5 implemented by the Apache Beam project. To enable this
we implemented a Clonos runner for Apache Beam. Nexmark in-
cludes queries that perform filtering, joins, aggregates, complex
windowing, etc. and serves greatly as a representative workload for
evaluating stream processing engines. We have excluded Q10 from
the benchmark because it requires access to Google’s GCP service.
Synthetic.We also use a synthetic workload to be able to evaluate
Clonos under configurable scenarios, not found in Nexmark and
to avoid optimizations such as operator fusion. This way, for each
operator, there is an extra layer of depth for which Clonos pays full
network and serialization costs of determinants. For the synthetic
experiments presented, we inject to Clonos multiple sequential
failures, either concurrently or in intervals. In the interest of space,
we only include a subset of our results.

7.3 Overhead Under Normal Operation
In this series of experiments we observe the performance of Clonos
under normal operation, i.e., without failures, and quantify runtime

5https://beam.apache.org/documentation/sdks/java/testing/nexmark/

overheads. We execute the complete Nexmark benchmark queries
setting the degree of parallelism of each operator to 25, meaning
that the different jobs occupy between 25 (3 operator stages for the
simplest queries such as Q1-2) and up to 150 CPU cores (6 stages
for Q7). Operator fusion is turned on.

What is the overhead of Clonos in terms of latency and
throughput, under normal operation (no failures)?

In the interest of space, we do not plot latency measurements as
we observed those to be stable and comparable to Flink’s latency
throughout our overhead experiments with a notable difference:
the tail latency in the case of DSD=Full can be up to 20% worse (ca.
25ms) than vanilla Flink. For DSD=1 we have noticed an overhead
of less than 10% in the worst case.

Figure 5 depicts the overhead of Clonos on throughput. First,
we see that for simple queries such as Q1-Q2 which are imple-
mented with simple map & filter operators (D=1) are not affected
by the overhead that comes with Clonos, such as in-flight logging.
In fact, such a small difference in throughput can easily be also
attributed to the effects of the underlying infrastructure. The most
complex queries are Q5 and Q7 which are implemented using an
aggregation tree to handle skewed keys, and they also perform
windowed aggregates. For both queries we observe that, since their
depth D=6, the "Full" determinant (i.e., DSD=6) sharing has a high
impact on throughput: up to 26%. However, a more reasonable
DSD=1 or 2, yields around 15-16% overhead in throughput. We
find this penalty in throughput reasonable, considering the ben-
efits of Clonos’ fast recovery times (next Section) and its ability
to deal with non-deterministic operators. Finally, throughout the
whole benchmark, we have observed an average penalty of 7% for
DSD=Full and 6% for DSD=1 compared to vanilla Flink.

7.4 Clonos Under Failure Scenarios
For failure experiments we chose to present detailed throughput and
latencymetrics for two of the most interesting Nexmark queries: Q3,
and Q8. In addition, we evaluate Clonos against Flink on multiple
and concurrent failure scenarios using a synthetic workload.
Recovery Time.We define recovery time to be the time between
the instant that a failure takes place and the instant that the re-
covering system’s observed latency has returned to values within
10% of the pre-failure latency. This metric is used to evaluate a
mechanism’s ability to recover fast from a failure. Note that this
metric also includes the time that a system needs to catch up with

10s

87s

(a) Q3: latency

3s

72s

(b) Q8: latency

103s

25s

(c) Multiple: latency

35s

135s

(d) Concurrent: latency

40 60 80 100 120 140 160
Experiment Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (K

 R
ec

or
ds

/s
ec

on
d)

Clonos
Flink

(e) Q3: throughput

40 60 80 100 120 140 160
Experiment Time (s)

0

10

20

30

40

50

Th
ro

ug
hp

ut
 (K

 R
ec

or
ds

/s
ec

on
d)

Clonos
Flink

(f) Q8: throughput

25 50 75 100 125 150 175 200
Experiment Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Th
ro

ug
hp

ut
 (M

 R
ec

or
ds

/s
ec

on
d) Clonos

Flink

(g) Multiple: throughput

25 50 75 100 125 150 175 200
Experiment Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Th
ro

ug
hp

ut
 (M

 R
ec

or
ds

/s
ec

on
d) Clonos

Flink

(h) Concurrent: throughput

Figure 6: Failure experiments with realistic workload (left) and multiple/concurrent failures (right)

the input stream. Although Clonos is operational in less than a
second, a lot of practical use-cases (e.g., credit card fraud detection)
require that the system, after recovery, can also catch up with the
input stream throughput and get back on track in order to process
data as soon as it becomes available.

What is the performance of Clonos with respect to la-
tency and throughput in the presence of single-operator
failures?

Nexmark. We focus on Q3 and Q8. Q3 performs a full history
join and filtering operations, while Q8 performs a windowed join,
which explains the throughput spikes as we measure throughput
at the job output sinks. We have also experimented with Q4, Q5,
and Q7 since they are the most complex queries, but those produce
very few output records and they were inappropriate to plot and
exemplify proper recovery times. In order to observe end-to-end
latency, a regular amount of output records must be generated.

Figure 6a shows that Clonos recovers within 10s by leveraging
standby operators and local recovery. After a sub-second switch to
the standby operator, replaying the lost epoch took roughly 10s at
which point a small number of queued records were emitted with
10s latency, before the system could catch up. During this time, the
alive tasks continue operating under regular latency. Flink, however,
loses availability on all tasks and takes at least 87s to recover and
catch up. In addition, different output partitions recover at different
speeds. This is indicated by the different lines of points visible
in the plot. In Figure 6b we inject a failure to the join operator.
Clonos recovers within 3s. Note that since we measure latency on
the output records (end-to-end latency) the visible points arranged
vertically signify records of different arrival times in their respective
windows. The window range also explains the empty spots in the
figure as the window fires every 10s. Flink, on the other hand, takes
more than 72s to fully recover.

In terms of throughput, Figure 6e depicts Clonos’ ability to in-
stantly recover the job’s original throughput, while Flink experi-
ences a downtime of multiple seconds and a turbulent recovery.
Notice how Clonos’ throughput is barely affected following the
failure. We can observe similar behavior in Figure 6f.

What is the performance of Clonos with respect to la-
tency and throughput in the presence of multiple fail-
ures?

We perform our multiple and concurrent failure experiments at
parallelism 5, operator graph depth 5, checkpoint interval 5 sec-
onds, and per-operator state size of 100 MB. Specifically, Figures 6c
and 6g depict an experiment where there are three failures with a
5-second interval, while Figures 6d and 6h depict an experiment
with three concurrent failures. The failures are sequenced, meaning
the failed operators have connected dataflows. We observe that
independently of the frequency of failures (whether they are stag-
gered or concurrent), Clonos’ recovery behaves similarly. Before
the downstream failures can be recovered, the upstream failures
must finish recovering, such that they can replay their in-flight
logs. Only partial throughput is lost during recovery, as records
continue to flow through causally unnaffected paths even though
shuffle connections are used. Similarly, latency is only increased
on a small subset of records flowing along causally affected paths
and latency quickly returns to its pre-failure value.
7.5 Memory Usage
The memory usage of Clonos is completely bound by the size of the
buffer pools configured (Section 6.1). We have experimented with
different memory sizes and spill strategies for the storage of the
in-flight record log as well as determinants. We have observed that
while the spill-buffer strategy is much more conservative memory-
wise, it leads to poorer and less predictable performance. The spill-
threshold strategy presents deteriorating performance under 50MBs

of space and has diminishing returns above 80MBs. Thus, all experi-
ments used 80MBs of in-flight log space per task. When the in-flight
record log would become larger than the available memory, the log
spills buffers to disk. Since both reading and writing to it have a
sequential access pattern, the "spill-threshold" strategy (Section 6.1)
yielded the best results. The size of the determinant buffer pool
has no effect on performance, but too small of a buffer pool may
lead to deadlocks. Experimentally, we have found that for DSD=1
a determinant buffer pool of size 5MB is more than sufficient for
most workloads. When DSD=Full, this value must be increased as
D grows, as more logs are replicated.

8 RELATEDWORK
Our contributions are related to fault tolerance, high availability,
and causal logging. An elaborate study of fault tolerance and high-
availability in stream processing is provided in a survey [24].

8.1 Fault Tolerance
A number of early stream processing systems provided fault tol-
erance, such as Aurora [16] and Borealis [9]. However, most fault
tolerance approaches of the time did not recover a system-wide
consistent state with very few exceptions [38]. More recent systems
like Apache Flink [12], IBM Streams [29], and Microsoft Trill [14],
achieve consistent exactly-once fault tolerance with global roll-
back recovery as described in Section 3. Other systems, such as
Storm [42], Heron [31], and Samza [36], implement at-least-once
consistency guarantee. Streaming systems to date increasingly try
to handle failures locally, that is, without disrupting a job or regions
of it, but only its failed components. Apache Spark [8] performs
exactly-once local recovery but in a micro-batch processing model
and assuming an idempotent sink that ignores already produced
results on recovery.

Consistent local recovery is offered by SEEP [22] and its exten-
sion based on stateful dataflow graphs (SDG) [23], Timestream [37],
Streamscope [34], and Rhino [18]. However, none of these systems
supports nondeterministic computations and they make strong as-
sumptions about input order. The only stream processing system
that delivers consistent local recovery and can support nondeter-
ministic computations with minimal assumptions is Millwheel [2].
However, Millwheel performs a transaction per record per opera-
tor on Spanner [17]. Spanner, to achieve low latency, depends on
atomic clocks to operate which do not exist in commodity clus-
ters. Clonos can provide Millwheel’s guarantees and consistency on
commodity hardware. Table 1 summarizes all systems’ determinism
assumptions.

8.2 High Availability
Existing work on high availability in stream processing [28] pro-
poses active replication [9, 38], passive replication [27, 32], hybrid
active-passive replication [26, 41], or models multiple approaches
and evaluates them with simulated experiments [13, 28]. These
approaches either constrain operator logic or support weaker than
exactly-once consistency guarantees. Clonos delivers high avail-
ability based on passive replication by substituting only the failed
tasks. At the same time Clonos maintains exactly-once consistency

Table 1: Assumptions of related work

System Assumptions

Millwheel [2] Scalable, transactional backend (Spanner)
Streamscope [34] Deterministic computations and input
Timestream [37] Deterministic computations and input
SEEP & SDG [23],
Rhino [18]

Deterministic computations, monotonically in-
creasing logical clock, records ordered by time.

guarantees that cover nondeterministic computations using causal
logging on a feature-rich production-grade system.

8.3 Causal Logging
We presented causal logging [19, 20] in Section 3. We have elabo-
rated both the system design and implementation aspects of the
causal log in Section 6 and the nondeterministic aspects in Section 4.

Among streaming systems, Timestream [37] and Streamscope [34]
use an optimistic logging-inspired dependency tracking approach,
which records input and output dependencies in computations and
uses them to rebuild the state if needed. Instead, Clonos records all
nondeterministic events and the order of execution. By additionally
respecting the always-no-orphans condition, Clonos can guarantee
consistent localized recovery.

Closest to the spirit of Clonos is lineage stash [45], which uses
causal logging to provide exactly-once consistency with local recov-
ery for nondeterministic operators. However, it does not support
important nondeterministic functions in stream processing, such
as timer-based services much needed for processing time windows
and watermarks required for progress tracking and out-of-order
data. In addition, it uses a micro-batch architecture while Clonos
implements continuous data processing. Finally, Clonos also ad-
dresses issues of high availability with standby tasks, state shipping
and reconfiguration.

9 CONCLUSIONS
In this paper we presented Clonos, a fault-tolerance and high-
availability method built in Apache Flink as a replacement for
its current fault tolerance mechanisms. Clonos, to the best of our
knowledge, is the first fault tolerance mechanism which is applica-
ble to a real, production-grade system and achieves consistent local
recovery, high availability, and the flexibility of nondeterministic
computations. Clonos has been a substantial engineering effort
within our team (more than 20K LOC), which still continues im-
proving the overhead of causal logging. Our experiments so far
have shown that Clonos can be competitive (5-24% overhead in
throughput and latency) with the current fault-tolerance mecha-
nism of Flink which is industry-proven and serves billions of events
every day, in multiple industries. At the moment, we are extending
our work into reducing the overhead of causal logging through
compressed data structures and extending Clonos’ guarantees to
low-latency exactly-once output.
Acknowledgements. This work has been partially funded by the
H2020 project OpertusMundi No. 870228, and the ICAI “AI for
Fintech Lab" project. Experiments were carried out on the Dutch
national e-infrastructure with the support of SURF Cooperative.

REFERENCES
[1] Adil Akhter, Marios Fragkoulis, and Asterios Katsifodimos. 2019. Stateful func-

tions as a service in action. In VLDB. 1890–1893.
[2] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman,

Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013.
MillWheel: fault-tolerant stream processing at internet scale. In VLDB. 1033–
1044.

[3] Lorenzo Alvisi. 1996. Understanding the message logging paradigm for masking
process crashes. Technical Report. Cornell University.

[4] Lorenzo Alvisi, Bruce Hoppe, and Keith Marzullo. 1993. Nonblocking and orphan-
free message logging protocols. In FTCS. 145–154.

[5] Lorenzo Alvisi and Keith Marzullo. 1998. Message logging: Pessimistic, optimistic,
causal, and optimal. IEEE Trans. Softw. Eng. 24, 2 (1998), 149–159.

[6] Apache Storm. 2021. Project. http://storm.apache.org/. Available online March
2021.

[7] Apache Storm Trident. 2021. Tutorial. https://storm.apache.org/releases/current/
Trident-tutorial.html. Available online March 2021.

[8] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong Zhu,
Reynold Xin, Ali Ghodsi, Ion Stoica, and Matei Zaharia. 2018. Structured Stream-
ing: A Declarative API for Real-Time Applications in Apache Spark. In SIGMOD.
601–613.

[9] Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, and Michael Stone-
braker. 2005. Fault-tolerance in the Borealis Distributed Stream Processing
System. In SIGMOD. 13–24.

[10] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas
Tzoumas. 2017. State Management in Apache Flink: Consistent Stateful Dis-
tributed Stream Processing. In VLDB. 1718–1729.

[11] Paris Carbone, Marios Fragkoulis, Vasiliki Kalavri, and Asterios Katsifodimos.
2020. Beyond Analytics: The Evolution of Stream Processing Systems. In SIGMOD.
2651–2658.

[12] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink TM: Stream and Batch Processing in a
Single Engine. IEEE Data Eng. Bull. 38 (2015), 28–38.

[13] Badrish Chandramouli and Jonathan Goldstein. 2017. Shrink: Prescribing Re-
siliency Solutions for Streaming. In VLDB. 505–516.

[14] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, and James F. Ter-
williger. 2015. Trill: Engineering a Library for Diverse Analytics. IEEE Data Eng.
Bull. 38 (2015), 51–60.

[15] K Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining
global states of distributed systems. ACM Trans. Comp. Sys. 3, 1 (1985), 63–75.

[16] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald Carney,
Ugur Cetintemel, Ying Xing, and Stan Zdonik. 2003. Scalable Distributed Stream
Processing. In CIDR.

[17] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Dale Woodford, Yasushi Saito, Christopher Taylor,
Michal Szymaniak, and RuthWang. 2012. Spanner: Google’s Globally-Distributed
Database. In OSDI.

[18] Bonaventura Del Monte, Steffen Zeuch, Tilmann Rabl, and Volker Markl. 2020.
Rhino: Efficient Management of Very Large Distributed State for Stream Process-
ing Engines. In SIGMOD. 2471–2486.

[19] Elmootazbellah Elnozahy. 1994. Manetho: Fault tolerance in distributed systems
using rollback-recovery and process replication. PhD thesis, Rice University
(1994).

[20] Elmootazbellah N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson.
2002. A Survey of Rollback-Recovery Protocols in Message-Passing Systems.
ACM Comput. Surv. 34, 3 (2002), 375–408.

[21] Elmootazbellah N Elnozahy and Willy Zwaenepoel. 1992. Manetho: Transparent
roll back-recovery with low overhead, limited rollback, and fast output commit.
IEEE Trans. Comput. 5 (1992), 526–531.

[22] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter
Pietzuch. 2013. Integrating Scale out and Fault Tolerance in Stream Processing
Using Operator State Management. In SIGMOD. 725–736.

[23] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter
Pietzuch. 2014. Making State Explicit for Imperative Big Data Processing. In

USENIX ATC. 49–60.
[24] Marios Fragkoulis, Paris Carbone, Vasiliki Kalavri, and Asterios Katsifodi-

mos. 2020. A Survey on the Evolution of Stream Processing Systems.
arXiv:2008.00842 [cs.DC]

[25] Can Gencer, Marko Topolnik, Viliam Ďurina, Emin Demirci, Ensar B. Kahveci, Ali
Gürbüz Ondřej Lukáš, József Bartók, Grzegorz Gierlach, František Hartman, Ufuk
Yılmaz, Mehmet Doğan, Mohamed Mandouh, Marios Fragkoulis, and Asterios
Katsifodimos. 2021. Hazelcast Jet: Low-latency Stream Processing at the 99.99th
Percentile. arXiv:2103.10169 [cs.DC]

[26] Thomas Heinze, Mariam Zia, Robert Krahn, Zbigniew Jerzak, and Christof Fet-
zer. 2015. An Adaptive Replication Scheme for Elastic Data Stream Processing
Systems. In DEBS. 150–161.

[27] Jeong Hwang, Ying Xing, Ugur Cetintemel, and Stan Zdonik. 2007. A Cooperative,
Self-Configuring High-Availability Solution for Stream Processing. In ICDE. 176–
185.

[28] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker, and S.
Zdonik. 2005. High-availability algorithms for distributed stream processing. In
ICDE. 779–790.

[29] Gabriela Jacques-Silva, Fang Zheng, Daniel Debrunner, Kun-Lung Wu, Victor
Dogaru, Eric Johnson, Michael Spicer, and Ahmet Erdem Sariyüce. 2016. Consis-
tent Regions: Guaranteed Tuple Processing in IBM Streams. In VLDB. 1341–1352.

[30] Asterios Katsifodimos and Marios Fragkoulis. 2019. Operational Stream Process-
ing: Towards Scalable and Consistent Event-Driven Applications. In EDBT.

[31] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher
Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.
2015. Twitter Heron: Stream Processing at Scale. In SIGMOD. 239–250.

[32] YongChul Kwon, Magdalena Balazinska, and Albert Greenberg. 2008. Fault-
Tolerant Stream Processing Using a Distributed, Replicated File System. In VLDB.
574–585.

[33] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos, Theodore John-
son, and David Maier. 2008. Out-of-order processing: a new architecture for
high-performance stream systems. In VLDB. 274–288.

[34] Wei Lin, Haochuan Fan, Zhengping Qian, Junwei Xu, Sen Yang, Jingren Zhou, and
Lidong Zhou. 2016. STREAMSCOPE: Continuous Reliable Distributed Processing
of Big Data Streams. In NSDI. 439–453.

[35] Matteo Migliavacca, David Eyers, Jean Bacon, Yiannis Papagiannis, Brian Shand,
and Peter Pietzuch. 2010. SEEP: scalable and elastic event processing. In Middle-
ware Posters and Demos Track.

[36] Shadi A. Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon Bringhurst,
Indranil Gupta, and Roy H. Campbell. 2017. Samza: Stateful Scalable Stream
Processing at LinkedIn. In VLDB. 1634–1645.

[37] Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu, Hongyu Zhu, Taizhi Zhang,
Lidong Zhou, Yuan Yu, and Zheng Zhang. 2013. TimeStream: Reliable Stream
Computation in the Cloud. In EuroSys. 1–14.

[38] Mehul A. Shah, Joseph M. Hellerstein, and Eric Brewer. 2004. Highly Available,
Fault-Tolerant, Parallel Dataflows. In SIGMOD. 827–838.

[39] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Joseph E. Gonzalez, JosephM. Hellerstein, and Alexey Tumanov. 2020. Cloudburst:
Stateful Functions-as-a-Service. In VLDB. 2438–2452.

[40] Utkarsh Srivastava and Jennifer Widom. 2004. Flexible Time Management in
Data Stream Systems. In PODS. 263–274.

[41] L. Su and Y. Zhou. 2016. Tolerating correlated failures in Massively Parallel
Stream Processing Engines. In ICDE. 517–528.

[42] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M.
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,
Nikunj Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. 2014. Storm@Twitter. In
SIGMOD. 147–156.

[43] Pete Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier. 2008. NEX-
Mark—A Benchmark for Queries over Data Streams DRAFT. Technical Report. OGI
School of Science & Engineering at OHSU.

[44] GuozhangWang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam,Mammad
Zadeh, Neha Narkhede, Jun Rao, Jay Kreps, and Joe Stein. 2015. Building a
Replicated Logging System with Apache Kafka. In VLDB. 1654–1655.

[45] Stephanie Wang, John Liagouris, Robert Nishihara, Philipp Moritz, Ujval Misra,
Alexey Tumanov, and Ion Stoica. 2019. Lineage Stash: Fault Tolerance off the
Critical Path. In SOSP. 338–352.

http://storm.apache.org/
https://storm.apache.org/releases/current/Trident-tutorial.html
https://storm.apache.org/releases/current/Trident-tutorial.html
https://arxiv.org/abs/2008.00842
https://arxiv.org/abs/2103.10169

	Abstract
	1 Introduction
	2 Approach Overview
	2.1 Normal Operation
	2.2 Recovery protocol
	2.3 Applicability & System Requirements

	3 Preliminaries
	3.1 Streaming Model
	3.2 Checkpoint-based Rollback Recovery
	3.3 Log-based Rollback Recovery
	3.4 Causal Logging

	4 Dealing with Nondeterminism
	4.1 Sources of Nondeterminism
	4.2 Abstracting Nondeterminism with Services
	4.3 Causal Log

	5 Exactly-once Recovery
	5.1 Lineage-based Replay
	5.2 Determinant-based Deduplication
	5.3 Correctness of Recovery Scheme
	5.4 Trading Correctness for Performance
	5.5 Achieving Exactly-once Output

	6 System Design Decisions
	6.1 In-flight Record Log
	6.2 Network Channel Reconfiguration
	6.3 Standby Tasks
	6.4 State Snapshot Dispatch

	7 Experimental Evaluation
	7.1 Setup
	7.2 Workloads
	7.3 Overhead Under Normal Operation
	7.4 Clonos Under Failure Scenarios
	7.5 Memory Usage

	8 Related work
	8.1 Fault Tolerance
	8.2 High Availability
	8.3 Causal Logging

	9 Conclusions
	References

