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ABSTRACT
Advanced data analysis typically requires some form of pre-
processing in order to extract and transform data before
processing it with machine learning and statistical analy-
sis techniques. Pre-processing pipelines are naturally ex-
pressed in dataflow APIs (e.g., MapReduce, Flink, etc.),
while machine learning is expressed in linear algebra with
iterations. Programmers therefore perform end-to-end data
analysis utilizing multiple programming paradigms and sys-
tems. This impedance mismatch not only hinders produc-
tivity but also prevents optimization opportunities, such as
sharing of physical data layouts (e.g., partitioning) and data
structures among different parts of a data analysis program.

The goal of this work is twofold. First, it aims to alleviate
the impedance mismatch by allowing programmers to author
complete end-to-end programs in one engine-independent
language that is automatically parallelized. Second, it aims
to enable joint optimizations over both relational and lin-
ear algebra. To achieve this goal, we present the design of
Lara, a deeply embedded language in Scala which enables
authoring scalable programs using two abstract data types
(DataBag and Matrix) and control flow constructs. Pro-
grams written in Lara are compiled to an intermediate rep-
resentation (IR) which enables optimizations across linear
and relational algebra. The IR is finally used to compile
code for different execution engines.

1. INTRODUCTION
Data analytics requirements have changed over the last

decade. Traditionally confined to aggregation queries over
relational data, modern analytics is focused on advanced in
situ analysis of dirty and unstructured data at scale. Data
sources such as log files, clickstreams, etc., are first cleansed
using relational operators, and then mined using cluster-
ing and classification tasks based on statistical and machine
learning (ML) methods. As a result, data cleaning and
preprocessing is typically an initial step of advanced data
analysis pipelines (e.g., product recommendations, statisti-
cal analysis). Moreover, the preprocessing logic and data
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representation often depends on the ML method that will
be applied subsequently.

While relational domain-specific languages (DSLs) such as
Pig [14], Hive [15], or Spark SQL/DataFrame [3] are a good
fit for ETL tasks, programming machine learning algorithms
in those languages is cumbersome. To this end, R-like DSLs
such as SystemML’s DML [10] or Apache Mahout’s Samsara
were proposed. These DSLs offer linear algebra and control
flow primitives suitable for expressing ML algorithms, but
only provide limited, non-intuitive support for classic ETL
tasks. This strict separation of programming paradigms in-
troduces three fundamental problems.
Impedance Mismatch. Large analysis pipelines have to be
authored in multiple DSLs, plumbed together by additional
code, and possibly executed on different systems.
Inefficient Data Exchange. Pre-processing in a relational
algebra (RA) DSL and subsequent learning in a linear alge-
bra (LA) DSL enforces materialization of the intermediate
results at the boundary. Moreover, unless the staging for-
mat offers meta-information about the physical layout, this
information is lost when the boundary is crossed.
Loss of Optimization Potential. Separating RA and LA
into distinct DSLs entails that different, albeit similar in-
termediate representations (IRs) and compilation pipelines
are used for the two languages. For example, compare the
compilation phases and DAG-based IRs for Hive [15] and
SystemML [4]. As a result, optimizations that could be ap-
plied among the IRs (e.g., filter and projection push-down,
sharing of physical layout) are currently not possible.

To overcome these problems, we argue for the unification
of relational and linear algebra into a common theoretical
foundation. To achieve this goal, first we need to explore
and reason about optimizations across the two algebras in a
suitable intermediate language representation (IR). Second,
we need to showcase the added benefits of unification and the
optimizations that come thereof, by defining a common DSL
with high-level programming abstractions for both relational
and linear algebra. In line of the benefits offered by other
UDF-heavy dataflow API’s, the proposed DSL should be
embedded in a host-language like Scala (e.g. Spark RDDs,
Samsara) rather than external (e.g., Pig, DML).

In this paper we propose Lara, an embedded DSL in Scala
which offers abstract data types for both relational and lin-
ear algebra (i.e., bags and matrices). We build our work on
Emma [1, 2], a DSL for scalable collection based processing,
which we extend with linear algebra data types. We ex-
ploit the code rewriting facilities of the Scala programming
language to lift a user program into a unified intermediate
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1 // Read measurements into the DataBags A and B
2 val A = readCSV(...) //
3 val B = readCSV(...)
4 // SELECT a1, ...,aN, b1, ..., bM
5 // FROM A, B
6 // WHERE A.id = B.id
7 val X = for {
8 a <- A
9 b <- B

10 if a.id == b.id
11 } yield (a1, ...,aN, b1, ..., bM)
12

13 // Convert DataBag X into Matrix M
14 val M = X.toMatrix()
15 // Calculate the mean of each column c of the matrix
16 val means = for ( c <- M.cols() ) yield (mean(c))
17 // Compute the deviation of each cell of M
18 // to the cell’s column mean.
19 val U = M - Matrix.fill(M.numRows, M.numCols)
20 ((i,j) => means(j))
21 // Compute the covariance matrix
22 val C = 1 / (U.numRows - 1) * U.t %*% U
23 // Compute singular value decomposition
24 // e.g. rescale M, reduce dimensions, etc.

Listing 1: Code snippet written in Lara

representation for joint optimization of linear and relational
algebra. Given this IR, a just-in-time (JIT) compiler gener-
ates code for different execution engines (Spark and Flink).

A Motivating Example. Consider a set of machinery
sensors found in industrial plants taking part in the produc-
tion of home mixers. In the end of the production line, a
percentage of those mixers is found to be defective. The
goal of our analysis is to train a classifier which will predict
whether a mixer has high chances of being defective, based
on the given measurements. For this task, we have to gather
data from various log files residing in different production
plants and join them in order to get all measurements of a
mixer throughout its production. Since there are thousands
of measurements per mixer and millions of mixers, we first
run a Principal Component Analysis (PCA) to prune the
number of measurements used for classification.

The above process can be implemented in Lara as shown
in Listing 1. Lines 2 and 3 read the data from two different
industrial plants before joining them (lines 7-11) to gain a
full view over all measurements for each of the mixers. Note
that the join is expressed as a native Scala construct, called
for-comprehension (see [2] for details). Next, DataBag X
which contains all projected measurements (a1, ...,aN , b1,
..., aM ) is converted into Matrix M (line 14). The next line
computes the mean of each of the measurement columns
before we compute matrix U, holding the deviation of each
of M’s cells from their corresponding column’s mean using
the fill operator (called ”filling function” in [13]). Finally,
line 22 computes the covariance matrix C. In the next step we
would feed matrix C to the PCA algorithm, which is omitted
from the example.
Discussion. Observe that the ETL part of the pipeline is
expressed as a declarative program of transformations over
DataBags, whereas the ML part is expressed in linear alge-
bra. Moreover, no physical execution strategy has been pre-
determined by the programmer. Our matrix abstraction is
strongly influenced by R’s matrix package and includes all
common operations on matrices. In addition, there are two
explicit operations to convert from a DataBag to a Matrix
and vise versa. Finally, note that converting a DataBag into

a Matrix does not necessarily mean that an operation is go-
ing to take place on a physical Matrix representation. For
example, consider a scalar multiplication of a Matrix: the
multiplication could be applied directly on a DataBag, since
scalar multiplications do not rely on special, linear algebra-
specific operators. Thus, we let the optimizer decide in
which physical data representation operations apply.

2. LANGUAGE FOUNDATIONS
Types as First Class Citizens. Our DSL is based around
the concept of generic types. We propose a set of elemen-
tary generic types that model different structural aspects
and represent both user-facing (e.g, matrix, bag) and engine-
facing (e.g, partitioning) abstractions. Each type implies (i)
a set of structural constraints expressed as axioms, as well
as (ii) a set of structure-preserving transformations, which
operate element-wise and correspond to the functional no-
tion of map. Moreover, the types can be suitably composed
to define new, richer structure. This allows for reasoning
about the optimization space in a systematic way.

User Types. The core types included in our model are
BagA, MatrixA, and VectorA. These types are polymorphic
(generic) with a type argument A and represent different
containers for data (i.e., elements) of type A. As such, their
implementations should be independent on A.

Generic types can be modeled using algebraic data types
(ADTs) using algebraic specifications [8]. An algebraic spec-
ification defines a set of functions that produce values of the
specified type (constructors), as well as a set of axiomatic
equations that relate constructor terms. This approach gives
rise to categorical semantics of each specification – a free
functor corresponds to the classical (or loose) semantics,
and the initial object in the target category to the initial
semantics. For instance, [1] advocates conceptually treating
bags as types specified by the so-called union representation
algebra:

data BagA = empty | sng A | union BagA× BagA

Bag values can be constructed by a nullary constructor
(empty), an unary constructor (sng), or a binary construc-
tor (union), and the associated axioms state that empty is
a unit and union is associative and commutative. LA types
with fixed dimensions, such as VectornA and Matrixn×mA, as
well as the monoids used in [9] naturally fit this framework.
The signature and dependencies between the constructors in
an ADT definition impose certain type structure. Mappings
that preserve this structure are called homomorphisms. In
the case of generic types, the structure represents an ab-
stract model for the shape of the container, and homomor-
phisms are characterized by a second-order function called
map. It is important to note that map is predominantly asso-
ciated with collections nowadays (as in MapReduce), while
the concept of map is pervasive to all generic types.

System Types. Reasoning about optimizations that af-
fect physical aspects such as partitioning or blocking means
that those should be included in our model. Crucially,
this type of structure can also be represented by generic
types. For example, we can use Par TA to represent a par-
titioned container of type TA (e.g., BagA, MatrixA), and
Blockn A to represent square-shaped blocks with dimension
n. Homomorphisms (maps) over those, model partition- or
block-preserving function applications (e.g., corresponding
to mapValues in Spark’s RDD API) respectively.



A ./ B
a1 b1 b2 b3

1 5 5 5

2 6 6 6

3 7 7 7

4 8 8 8

(a) Result of A ./ B

(0, 0) 1, 5 (0, 1) 5, 5

(0, 0) 2, 6 (0, 1) 6, 6

(1, 0) 3, 7 (1, 1) 7, 7

(1, 0) 4, 8 (1, 1) 8, 8

(b)

(0, 0) 1, 5
2, 6

(0, 1) 5, 5
6, 6

(1, 0) 3, 7
4, 8

(1, 1) 7, 7
8, 8

(c)

A B
ID a1

0 1

1 2

2 3

3 4

ID b1 b2 b3

0 5 5 5

1 6 6 6

2 7 7 7

3 8 8 8

(d) Original tables

(0, 0) 1 (0, 0) 5 (0, 1) 5, 5

A B

(0, 0) 2 (0, 0) 6 (0, 1) 6, 6

(1, 0) 3 (1, 0) 7 (1, 1) 7, 7

(1, 0) 4 (1, 0) 8 (1, 1) 8, 8

(e)

(0, 0) 1, 5
2, 6

(0, 1) 5, 5
6, 6

(1, 0) 3, 7
4, 8

(1, 1) 7, 7
8, 8

(f)

Figure 1: Two execution strategies for toMatrix (A ./ B) (colors represent different partitions).
Above (a – c) Näıve Approach. Below (d – f) Partition Sharing.

Type Conversions. An obvious candidate to formalize
generic type conversions in a categorical setting are natu-
ral transformations – polymorphic functions t : TA → UA
which change the container type from T to U (e.g., from
Matrix to Bag) irrespective of the element type A. Their
characteristic property states that application of t commutes
with application of map f for all f . This formalism, how-
ever, cannot be directly applied in all cases. For example
toMatrix : Bag (N, A) → MatrixA preserves the element
value A but relies on an extra index N to determine the ele-
ment position in the resulting matrix. Extending or adapt-
ing the theory of natural transformations in order to fit our
needs is an open research question.

Control-Flow. To enable rewrite-based optimizations, our
proposed language has to be referentially transparent (i.e.,
purely functional). Moreover, in order to facilitate efficient
and concise implementations of optimizations, the language
IR should satisfy the following requirements. (R1) Both el-
ementary and compound expressions should be addressable
by-name. (R2) Each use-def and def-use information should
be efficient, and easy to compute and maintain. (R3) Con-
trol and data flow should be handled in a unified way.

All of the above requirements could be satisfied by an
IR in static single assignment (SSA) form. Graph-based
SSA IRs (e.g., sea of nodes) are nowadays used in compiler
backends like LLVM and Java HotSpot. We plan to use a
purely functional IR which conforms to the SSA constraints.
It enforces R1 through a restriction on the allowed terms
called A-normal form, and R2-R3 by modeling control-flow
through function calls in the so-called direct style.

3. OPTIMIZATIONS
A number of holistic optimizations can be derived from

the unified formal model and implemented under the as-
sumption of a full view of the algorithm code. Examples
are projection push down (based on knowledge that fields
are never accessed), as well as filters that are e.g., applied
on matrices whereas they can be pushed to the DataBags
from which the matrices originate. In the sequel we present
more sophisticated optimizations that come from a deeper
analysis of a program’s code.

Matrix Blocking Through Joins. Distributed opera-
tions over matrices are commonly done over block-partitioned
matrices [10, 5]. This representation differs a lot from the

unordered, non-indexed bag representation, commonly used
in dataflow APIs.

Consider again the example in Listing 1. Lines 7-11 per-
form a join, producing a bag which is converted to a matrix
and processed in lines 16 and 22. Note that the subsequent
linear algebra operations (filling as well as computing the
covariance matrix) can be executed over a block-partitioned
matrix. A näıve execution of this program would require to:
shuffle the data once in order to execute the join, and then
shuffle once again to block-partition the matrix to perform
the linear algebra operations. In the sequel we use an exam-
ple to show (i) how the näıve approach would perform the
join and subsequently the block partitioning, and (ii) how
we can avoid one partitioning step (for the join).
Näıve Approach. Assume we execute the join of A and B
as shown in Figure 1d on 4 nodes, using hash-partitioning
with h(k) = k mod 4, where k is the product id. To block
partition the matrix for the subsequent linear algebra oper-
ations, systems typically introduce a surrogate key rowIdx
for each tuple of the join result, to assign subsets of the rows
and columns to blocks. Therefore, we assign the following
key to each tuple:

k = ( rowIdx
rowBlkSize

, colIdx
colBlkSize

)

The result of this key assignment for the join result is de-
picted in Figure 1b. Note that the blocks are partial. A
grouping operation can bring the partial blocks on the re-
spective machines and construct the final blocks as shown
in Figure 1f.
Partition Sharing. A full view over the code in Listing 1
allows us to see both, the RA part in lines 1-11, the LA
part in lines 16-22, and to holistically reason about the type
conversion in line 14. Ideally, the join operation and the
linear algebra operations can share the same partitioning.
We can achieve that by range-partitioning the input tables A
and B separately and then combine them. More specifically,
we use a different key to partition the inputs, taking into
account both the (unique, and sequential1) product id and

1Similar optimizations apply on joins over non-unique keys
(e.g. normalized data [12]). Moreover, the assumption of
sequential primary keys can be relaxed in the expense of an
extra pass over the data that is negligible in complex analysis
programs. For the lack of space, we omit this discussion.



the column index:

k = ( ID
rowBlkSize

, resultColIdx
colBlkSize

)

where resultColIdx is the index of the column in the (now
virtual) bag X and ID is the primary key of the inputs. As
the schema of the join result is explicitly provided in Lara
(Listing 1 line 11), we can easily obtain the column indexes
of the join result (X). The partitioning of the tables is shown
in Figure 1e. Observe that the blocks with column index
0 are split across the tables, thus, we also have column-
wise partial blocks. To create the final partitioning with
complete blocks, we union A and B, before we aggregate the
blocks sharing the same block id.

Row-wise Aggregation Pushdown. In our example List-
ing 1, line 16 calculates the mean for each column in the
matrix. Now, let us consider calculating the mean for each
row, as shown in the following snippet:

// Convert DataBag X into Matrix M
val M = X.toMatrix()
// Calculate the mean of each row r of the matrix
val means = for ( r <- M.rows() ) yield (mean(r))

This would require a full pass over the data, and in fact,
as the matrix is partitioned block-wise, we have to merge
the partial aggregates of the blocks, to compute the full ag-
gregate over each row. On the other hand, this could be
executed in the DataBag representation in a single pass, as
we have tuple/row at-a-time processing. In a typical hash-
partitioned join, the aggregate could be calculated while ex-
ecuting the join with a simple mapper after the join.

Caching Throughout Iterations. A holistic view over
the program allows us to reason about the structure of the
control flow. For instance, caching data which is used re-
peatedly within an iteration or along multiple control-flow
branches, can result in great performance benefits. This be-
comes even more interesting when the data originates from
pre-processing which would otherwise be re-computed for
each iteration. The decision to cache is not always evident
and forces the programmer to consider system specifics –
Lara currently employs a greedy strategy which implicitly
caches data used repeatedly in iterations.

4. RELATED WORK
ML Libraries & Languages. SystemML’s DML [4] and
Mahout’s Samsara provide R-like linear algebra abstractions
and execute locally or distributed on Hadoop and Spark.
While Samsara has fixed implementations for its linear alge-
bra operations, SystemML applies inter-operator optimiza-
tions like operator fusion and decides execution strategies
based on cost estimates. As there is no support for rela-
tional operators, ETL has to be executed in a different sys-
tem and there is no potential for holistic optimization. The
Delite project [6] provides a compiler framework for domain-
specific languages targeting parallel execution. Delite’s IR is
based on higher-order parallelizable functions (e.g., reduce,
map, zipWith). However, Delite’s IR does not allow to rea-
son holistically about linear and relational algebra. In this
work, we base our reasoning on types and on the holistic
view of the AST. Finally, we believe that monad compre-
hensions provide a better formal ground for reasoning and
applying algebraic optimizations.
Algebra Unifying Approaches. Kumar et al. [12] in-
troduce learning over linear models on data residing in a
relational database. They push parts of the computation of

the ML model into joins over normalized data, similar to [7].
These works focus on generalized linear models, as we focus
on more generic optimizations that can be derived directly
from the common intermediate representation of linear and
relational algebras . MLBase [11] provides high-level ab-
stractions for ML tasks with basic support for relational op-
erators. Their DSL allows the optimizer to choose different
ML algorithm implementations, but does not take relational
operators into account nor does it apply any optimization
among algebras.
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